СЦБИСТ - железнодорожный форум, блоги, фотогалерея, социальная сеть

СЦБИСТ - железнодорожный форум, блоги, фотогалерея, социальная сеть (https://scbist.com/)
-   Ж/д статьи (https://scbist.com/zh-d-stati/)
-   -   [Статья] Колеса во взаимодействии с рельсами (https://scbist.com/zh-d-stati/13318-statya-kolesa-vo-vzaimodeistvii-s-relsami.html)

Admin 30.01.2012 22:03

[Статья] Колеса во взаимодействии с рельсами
 
Колеса во взаимодействии с рельсами


Условия эксплуатации колесных пар


Колеса являются одним из основных и наиболее нагруженных элементов ходовой части железнодорожного подвижного состава, непосредственно взаимодействуя с путем. При проектировании колесных пар следует учитывать ряд конструктивных ограничений, связанных с особенностями их эксплуатации.

Колесные пары должны соответствовать принятым ширине колеи, габариту подвижного состава и осевым нагрузкам. По габаритным требованиям оси и буксы должны находиться на определенной высоте над УГР, кроме того, диаметр колес должен быть увязан с конструкцией рессорного подвешивания. Спроектированная с учетом этих условий колесная пара должна выдерживать заданный уровень динамических нагрузок и сил, возникающих во взаимодействии как между экипажем и колесными парами, так и между колесами и рельсами.

Максимальная статическая нагрузка от колесной пары на рельсы включает массу груженой (заполненной, экипированной) единицы подвижного состава и собственную массу колесной пары, которая при оси диаметром 150 мм и двух колесах диаметром 1000 мм составляет примерно 1,45 т. На железных дорогах Великобритании (BR) максимально допускаемая осевая нагрузка составляет 25 т.

Масса кузова и тележек обычно передается на колесные пары через буксы, размещенные с наружной стороны колес (встречаются конструкции, в которых буксы расположены внутри колесной пары). Колесные пары подвергаются значительным циклическим динамическим нагрузкам, в результате которых в колесах накапливаются усталостные дефекты. При этом следует иметь в виду, что колесо диаметром 1 м на пути длиной 3140 км совершает 1 млн. оборотов. Согласно теории усталостного сопротивления металлов для изделий, подвергающихся циклическому нагружению, величина допускаемых напряжений значительно ниже, чем для работающих в условиях статического нагружения.

Для обеспечения безопасности движения и предотвращения излома колесных пар под подвижным составом на железных дорогах установлен строгий контроль за качеством изготовления колес и их состоянием в эксплуатации. При этом определены предельные отклонения размеров и виды дефектов, с которыми колесные пары можно допускать к эксплуатации. Производится периодическая проверка колесных пар с помощью ультразвуковых и магнитных средств дефектоскопии.
Функции колесных пар

Колесные пары выполняют следующие функции: опирания и направления подвижного состава при движении по рельсовому пути; обеспечения требуемого уровня ускорения при разгоне и замедления при торможении; пропускания тяговых токов в землю и токов короткого замыкания от напольных устройств СЦБ. Все эти функции реализуются в зоне контакта колеса и рельса, и их анализ позволяет разработать требования к контактирующим поверхностям взаимодействующих тел.

Согласно классической теории механики, коэффициент трения есть отношение силы трения скольжения к вертикальной нагрузке. Для сухих металлических поверхностей он находится в пределах 0,25 - 0,40. Сопротивление качению современных вагонов со стальными колесами не превышает 10 кг/т, что равноценно коэффициенту трения 0,01. Иначе говоря, трение скольжения на практике присутствует только при проскальзывании колес относительно рельсов, а также в буксах, имеющих подшипники скольжения, причем в последнем случае скольжение происходит в контролируемых условиях и при постоянном наличии смазки. Если же буксы оснащены подшипниками качения, трение скольжения вообще сводится к минимуму и проявляется лишь в местах контакта металл/металл внутри подшипника.

В идеальном случае для обеспечения минимального взаимодействия с путем экипаж должен двигаться в рельсовой колее прямолинейно, без набегания гребнями колес на рельсы. Однако под воздействием неровностей верхнего строения пути и на поверхности катания колес колесная пара совершает сложные пространственные перемещения, которые через буксы и рессорное подвешивание передаются экипажу. Конусность поверхности катания колес и подуклонка рельсов способствуют прямолинейному движению экипажа в прямых участках без набегания гребня колес на рельсы. Она же облегчает вписывание экипажа в кривые, компенсируя разность касательной скорости колес, катящихся по наружному и внутреннему рельсам, до того момента, пока наружное колесо не начнет направляться наружной рельсовой нитью. С этого момента колесо начинает проскальзывать по рельсу и возникают дополнительные поперечные силы между гребнем колеса и рабочей гранью наружного рельса. Это приводит к повышенному боковому износу рельсов и гребней колес, скрипу, уширению колеи и возникновению условий для вкатывания колеса на рельс.

Если современный вагон разогнать и отцепить, на горизонтальном пути он будет постепенно снижать скорость с замедлением порядка 0,1 м/с2. Для повышения эффективности торможения и снижения потерь времени на замедление разработаны различные конструкции тормозов, от простейших фрикционных до усложненных электродинамических, которые позволяют быстро и плавно останавливать поезд. Максимальная величина замедления при торможении у современных пригородных поездов, обращающихся на участках с интенсивным движением, достигает 1,2 м/с2, у других пассажирских поездов не превышает 0,9 м/с2. При таких высоких величинах замедления коэффициент трения между колесом и рельсом должен быть не менее 0,09 - 0,12, иначе может произойти заклинивание, и колеса вместо качения будут скользить по рельсам. В результате этого на бандажах колес могут образовываться ползуны, от ударного воздействия которых в рельсах возникают повреждения.

Если при торможении поезда к колесам прикладывается тормозная сила, которая замедляет вращение колес, то при разгоне к ним прикладывается крутящий момент, который увеличивает частоту вращения. Как и при торможении, коэффициент трения в контакте колеса и рельса ограничивает крутящий момент при разгоне до величины, при которой не будет пробоксовки колес. Для предотвращения чрезмерного боксования и вызываемого им образования дефектов рельсов в виде лысок в настоящее время все тяговые единицы оборудуются специальными устройствами. При этом в связи с боксованием и проскальзыванием колес при разгоне и торможении следует учитывать, что, во-первых, при этом происходит истирание поверхности катания рельсов и увеличение коэффициента трения для последующих колесных пар, во-вторых, для повышения трения между колесом и рельсом применяются различные методы, наиболее распространенным из которых является подача сухого песка в зону контакта, хотя это иногда приводит к нежелательным побочным последствиям.

Особенностью рельсового транспорта является то, что в результате качения стальных колес по стальным рельсам на поверхности катания образуется чистая блестящая продольная полоса, через которую могут проходить обратные токи. Это обстоятельство способствовало разработке и внедрению электрической тяги. Только небольшое число железных дорог и систем городского рельсового транспорта в настоящее временя не используют ходовые рельсы в качестве обратного провода - неотъемлемой части общей системы тягового электроснабжения.

Однако при этом возникают проблемы. Специалисты полагают, что особое внимание следует уделять токопроводящим элементам не только на тяговых единицах, но на всех видах подвижного состава, обращающегося по электрифицированным железным дорогам. Это связано с тем, что из-за сопротивления рельсов обратные токи имеют тенденцию к перетеканию от тяговой единицы на путь к точке заземления рельсов через колеса и рамы других экипажей. Чтобы предотвратить прохождение этих токов через буксы, все вагоны должны иметь заземлители. Вместе с тем имеет место положительный эффект от обратных токов, проходящих через зону контакта колеса и рельса, проявляющийся в том, что они способствуют удалению пленочных изолирующих покрытий, ухудшающих сцепление колес с рельсами, особенно если они влажные, с поверхности контактирующих тел.

Наличие токопроводящих дорожек на колесах и рельсах позволило специалистам по СЦБ и связи использовать колесные пары в качестве короткозамыкающих или переключающих устройств для определения местонахождения поездов через рельсовые цепи низкого напряжения. Благодаря этому стала возможной централизация управления сигналами и стрелочными переводами с постами управления движением, оборудованными дисплеями, на которых отображается местонахождение поезда в любой момент времени. Современные системы СЦБ, использующие принцип токопроводимости контактных поверхностей колес и рельсов, в достаточной степени обеспечивают безопасность движения поездов.

Однако эта функция может оказаться ненадежной в эксплуатации, если контактирующие поверхности загрязнены. Образующаяся изолирующая пленка в виде слоя ржавчины, песка или опавших листьев существенно снижает токопроводимость рельсовых цепей. (Рост числа отказов рельсовых цепей по этой причине связан с техническим прогрессом в других областях. Например, вследствие замены паровозов локомотивами других видов и уменьшения опасности пожаров сократилась вырубка деревьев и кустарника вдоль железнодорожных линий. Это повысило устойчивость земляного полотна и улучшило экологию окружающей среды, но в то же время увеличило объем листвы на пути.) Кроме того, совершенствование рессорного подвешивания подвижного состава повысило устойчивость движения и снизило интенсивность виляния тележек. В результате уменьшились поперечные перемещения колес по рельсам и, соответственно, взаимное трение контактирующих поверхностей, "очищающее" токопроводящие дорожки. Из-за этого загрязнения с них удаляются менее интенсивно, и надежность работы рельсовых цепей снижается. Для повышения их надежности приходится использовать различные технические решения.


Требования к контактирующим поверхностям


Основным требованием к контактирующим поверхностям колес и рельсов является обеспечение высокой величины коэффициента трения для поддержания такого уровня сцепления, при котором колеса могли бы катиться по рельсам без проскальзывания даже в режиме торможения или разгона. При проектировании экипажей максимальный коэффициент трения при разгоне принимается 0,25, а минимальный при торможении 0,12, хотя закладываемые в конструкцию резервы обеспечивают безопасную эксплуатацию при коэффициентах трения, выходящих за эти пределы.

При движении экипажа по пути по большей части имеет место соприкосновение гребня колеса с боковой поверхностью рельса, что приводит к возникновению дополнительных боковых сил. Для сведения этих сил к минимуму необходимо создание соответствующих профилей поверхности катания колес и рельсов. Состояние пути и колесных пар оказывает решающее влияние на вертикальные и горизонтальные силы. Качение колеса по рельсу осуществляется по узкой полосе контакта. При этом требуются идеально круглое колесо и плоская поверхность катания рельса. Если у колеса имеется ползун или овальность, при каждом обороте колеса рельс будет подвергаться ударным нагрузкам, и реакция от этих ударов будет передаваться на подрельсовое основание, а также на рессорное подвешивание и кузов подвижного состава (следовательно, на пассажиров и груз), расстраивая конструкцию и ухудшая условия перевозки. Подобные же явления происходят при наличии неровностей у рельсов. С учетом того, что колесная пара имеет неподрессоренную массу 1,5 т, динамическое воздействие получается весьма значительным. Оно будет еще больше, если на оси смонтированы тяговый двигатель и передаточный механизм.

При рассмотрении этих воздействий следует принимать во внимание влияние множественности колесных пар. Через экипаж осуществляется связь между всеми колесными парами единицы подвижного состава, а через сцепные приборы - с другими вагонами поезда. Поэтому динамическое поведение колесных пар нельзя рассматривать изолированно. К тому же следует иметь в виду, что статическая нагрузка от экипажа равномерно распределяется по колесным парам, но при разгоне или торможении она может перераспределяться.

Величина динамического воздействия зависит от параметров рессорного подвешивания, неподрессоренных масс, эксцентриситета вращающихся масс, упругих характеристик пути, а также размера и длины волнообразных неровностей на поверхности катания рельсов.

Помимо вертикальных и боковых, при разгоне и торможении поезда в контакте колеса и рельса возникают продольные силы. При вилянии колесной пары также возникают продольные силы, которые стремятся вернуть ее в среднее положение относительно оси пути. О поперечных силах, возникающих при набегании гребня колеса на боковую грань головки рельса, особенно в кривых, сказано выше. Действием этих сил колесная пара стремится отжать рельс наружу кривой. Вертикальная составляющая поперечной силы в кривой в сочетании с неудовлетворительными параметрами рессорного подвешивания при определенных условиях может вызвать вкатывание колеса на головку рельса и последующий сход.

Рассмотренный спектр сил следует учитывать при проектировании колесных пар. Динамические нагрузки и их циклический характер предъявляют повышенные требования к материалам, из которых изготавливают колесные пары. Предпочтительнее изготовлять их путем ковки стальных отливок, обладающих высоким пределом текучести, повышенной износостойкостью и ударной вязкостью. В процессе изготовления колес необходимо соблюдать высокую технологическую точность - отклонения от проектных размеров не должны превышать 0,25 мм. В эксплуатации следует осуществлять строгий контроль за состоянием колесных пар и своевременно выявлять дефекты, которые могут перерасти в трещины с последующим разрушением колес.


Часовой пояс GMT +3, время: 02:26.

Powered by vBulletin® Version 3.8.1
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd. Перевод: zCarot


Яндекс.Метрика