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Введение

Дисциплина «Теория автоматического управления» изучается сту¬
дентами специальности «Электрический транспорт железных до¬
рог» в течение одного семестра и состоит из курса лекций и лабо¬
раторных работ. Ее логическим продолжением является дисцип¬
лина «Системы управления электроподвижным составом и их
автоматизация», в которой помимо курса лекций предусмотрены
лабораторные и курсовая работы. В курсовой работе выполняется
проектирование системы автоматического регулирования элект-
роподвижного состава (э.п.с.) заданного типа, для чего использу¬

ются материалы обеих дисциплин.
Содержание указанных дисциплин базируется на курсах «Выс¬

шая математика», «ТОЭ», «Электронная и преобразовательная тех¬
ника», а также «Аналитическая механика». Из последнего курса по¬
требуются знания по вопросам устойчивости движения, а также по
способам решения дифференциальных уравнений.

Предлагаемый учебник соответствует учебным программам

дисциплин «Теория автоматического управления», «Системы уп¬
равления электроподвижным составом» и «Микропроцессорные

системы управления» специальности «Электрический транспорт

железных дорог». Каждая из этих дисциплин изучается в течение
одного семестра.

Учебник состоит из трех частей. Первая часть посвящена тео¬
рии автоматического управления. В этой части рассмотрены ос¬
новные понятия об управлении на примерах электроподвижного

состава. При рассмотрении функциональных схем отдельно изло¬
жены решения, применимые для любых технических объектов и
для э.п.с.

Большое внимание уделено аналитическому описанию линей¬
ных непрерывных, линейных импульсных и нелинейных систем.
Рассмотрена общая постановка задачи исследования устойчивос¬

ти таких систем. Необходимость исследования линейных импуль-

3



сных систем обусловлена широким применением на э.п.с. микро¬
процессорных систем управления.

Во второй части приведены модели отдельных функциональных

элементов систем управления э.п.с. При этом большое внимание
уделено моделям основных объектов управления коллекторных и
асинхронных тяговых двигателей. Кроме того, в этой части рассмот¬
рены основные критерии устойчивости систем автоматики, крите¬
рии качества регулирования и способы решения задачи синтеза си¬
стем автоматического управления. Приведены примеры моделиро¬
вания систем автоматического управления э.п.с.

Третья часть посвящена микропроцессорным системам управле¬
ния. В этой части рассмотрены способы построения таких систем,
их структура и алгоритмы управления э.п.с.



Глава 1. ПОНЯТИЕ ОБ УПРАВЛЕНИИ

1.1. Основные понятия

Управление — это целенаправленное действие, обеспечиваю¬
щее получение необходимых результатов при проведении любого
процесса (в качестве процесса можно рассматривать движение
электровоза, работу тяговых электродвигателей (т.э.д.), работу

пневматического тормоза и т.п.). Законы, по которым организу¬
ются целенаправленные действия, изучает специальная наука —
кибернетика — наука об управлении, становление которой про¬
исходило в середине XX века.

Законы управления оказались одинаковыми для технических
объектов и живых организмов. Впервые это единство было уста¬
новлено американским ученым Норбертом Винером [10], кото¬
рого по праву считают основателем кибернетики. Однако, появи¬
лась эта наука гораздо раньше — во второй половине XVIII — на¬
чале XIX века, когда были созданы первые автоматические ус¬
тройства по регулированию уровня воды в котле паровой маши¬
ны Ползунова и центробежный регулятор скорости вращения па¬
ровой машины Дж. Уатта. В XIX веке в связи с бурным ростом тех¬
ники были выполнены первые научные работы в области кибер¬
нетики, которые ведутся и до настоящего времени. Большой вклад
в развитие кибернетики был сделан такими отечественными уче¬
ными, как А.М. Ляпунов, А.И. Берг, В.М. Глушков, А.Н. Колмо¬
горов, А.Я. Хинчин, и многими другими.

Любой процесс управления состоит из следующих этапов:
1. Получение начальной информации (НИ) об объекте и цели управ¬

ления.
Для э.п.с. к этому этапу относятся сведения о техническом уст¬

ройстве, характеристиках и состоянии локомотива и поезда, на¬
выки по управлению, сведения о поезде и участке обращения и т.п.
Часть этой информации машинист получает в процессе обучения,
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а часть — из документов, вручаемых ему перед отправлением (натур¬
ный лист, справки об автотормозах, о предупреждениях и ограниче¬
ниях скорости и т.п.).

2. Сбор рабочей информации (РИ) о ходе управляемого процесса и
действующих возмущениях.

Для э.п.с. в качестве рабочей информации можно рассматри¬
вать текущие значения времени хода tx, скорости движения v,
пройденного пути s, тока тяговых двигателей i и т.п. К возмуще¬
ниям относятся: напряжение в контактной сети и
ние движению w и коэффициент сцепления \)/.

3. Сопоставление рабочей информации с начальной и выработка
алгоритма управления.

Алгоритм — это совокупность правил, по которым выполняется
решение любой задачи.

4. Исполнение алгоритма или управление.
Первые три этапа требуют затрат умственного труда и называ¬

ются кибернетическими или распорядительными. Содержанием этих
этапов является передача и преобразование информации. Носите¬
лями информации являются сигналы — физические величины, ко¬
личественные показатели которых характеризуют передаваемую
информацию. Например, сигналами скорости могут быть: напря¬
жение тахогенератора, число импульсов или частота их появления
и т.п. Замену умственного труда человека машинным при выпол¬
нении этих этапов называют автоматизацией производственных
процессов.

Четвертый этап требует затрат физического труда и его называ¬
ют энергетическим или исполнительным. Замену физического тру¬
да человека машинным при выполнении четвертого этапа назы¬
вают механизацией производственных процессов. Для перехода к
автоматизации необходимо предварительно заменить физический
труд машинным, т.е. выполнить механизацию процесса. Поэтому
механизация является необходимой предпосылкой автоматизации.

Поскольку на э.п.с. все процессы управления механизированы (ма¬
шинист только переводит рукоятки контроллера), то э.п.с. в боль¬
шой мере подготовлен к оборудованию автоматическими систе¬
мами управления.

Автоматической называют такую систему управления, в кото¬
рой автоматизированы все процессы, за счет чего не требуется вме-

сопротивле-
КС’
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шательства человека в ее работу. Систему, в которой человек при¬
нимает участие в процессе управления только при выработке от¬
ветственных решений, называют автоматизированной.

1.2. Уровни автоматизации

Различают пять уровней автоматизации.
Ручное или неавтоматическое управление. На данном уровне все

этапы процесса управления выполняет человек-оператор. Этот уро¬
вень широко применен на э.п.с., при этом машинист оценивает
пройденный путь, время хода, а также скорость движения, т.е. ра¬
бочую информацию РИ, сопоставляет эту информацию с длиной
перегона, допустимыми скоростями движения и заданным време¬
нем хода по графику, т.е. с начальной информацией НИ, учитывает
уровень напряжения в контактной сети — возмущение. По этим
данным машинист выбирает режим работы э.п.с. (алгоритм) и уп¬
равляет рукоятками контроллера и кранов машиниста, реализуя
выбранный алгоритм. Таким образом, ручное управление э.п.с.
полностью механизировано.

Автоматизационное связывание. При этом последовательность
выполняемых операций обеспечивается автоматически, но по ко¬
манде оператора. Различают порядково-временное и функциональ¬

ное связывание. Данный уровень автоматизации широко исполь¬
зован на э.п.с. Порядково-временное связывание состоит в том, что
начало (конец) одного процесса ставят в зависимость от начала
(конца) другого (других) процессов, и применяется при переходах
с одной ходовой позиции на другую с помощью блокировок линей¬
ных контакторов и «разверток» групповых переключателей.

Функциональное связывание состоит в том, что начало (конец)
одного процесса определяется значением некоторого показателя
другого процесса. Этот вид связывания широко используют в сис¬
темах защиты э.п.с. и в системах автоматического пуска электро¬
поездов и вагонов метрополитена. В системах автоматического пус¬
ка переход группового переключателя на следующую позицию про¬
исходит после того, как ток тягового электродвигателя уменьшит¬

ся до величины тока уставки реле ускорения.
Автоматическое управление. На этом этапе обеспечивается из¬

менение управляемой величины по заданному закону при помощи
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g автоматического регулятора
(АР), управляемого человеком.

При этом систему автома¬
тического управления (САУ)
можно представить в виде схе¬
мы (рис. 1.1), состоящей из

двух элементов: объекта управления (ОУ) и автоматического регу¬
лятора (АР). Причем АР связывает выход ОУ (управляемую вели¬
чину у) с его входом (управляющей величиной ц), реализуя таким
образом замкнутую систему автоматического регулирования, т.е.
систему с обратной связью (ОС). Изменение заданного значения
управляемой величины (сигнал g) выполняет человек-оператор
(на э.п.с. — машинист).

Первые САУ на э.п.с. появились в цепях управления вспомога¬
тельных машин: мотор-компрессоров, генераторов управления и
мотор-вентиляторов. После внедрения тиристорных преобразова¬

телей появились САУ тяговых электродвигателей (т.э.д.). В нашей
стране такие системы впервые были использованы на грузовых
электровозах ВЛ80Т и ВЛ80С в блоке управления реостатным тор¬
можением (БУРТ) в режиме реостатного торможения.

Позднее САУ была использована на электровозах ВЛ80Р в бло¬
ке управления выпрямительно-инверторным преобразователем
(БУВИП) в режиме рекуперации. Эта САУ выполняет управление
инвертора на постоянство угла запаса 5 и получила название
БРУЗ — блок регулирования угла запаса. Затем появились САУ ре¬
куперативного торможения для электровозов ВЛ10у, ВЛ11.

Более совершенные САУ были разработаны для электровозов
ВЛ85 и ВЛ65. В них выполняется автоматическое управление ско¬
ростью движения и токами т.э.д., вследствие чего имеется два за¬
дающих сигнала, пропорциональных заданным значениям тока тя¬
говых двигателей /3 и скорости движения v3: = v3 и = ly

Блок автоматического управления этих электровозов, называе¬
мый БАУ, управляет работой блока БУВИП, такого же как и на элек¬
тровозах ВЛ80Р. Аналогичными системами оборудованы и новые
электровозы — ЭП10, 2ЭС4К, 2ЭС6.

Интеллектуальное автоматическое управление применяется для
управления разнородными технологическими процессами и вклю¬
чает в себя все САУ для каждого процесса. На э.п.с. такие системы

р
АР ОР

ОС

Рис. 1.1. Схема автоматического
регулирования
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используют для управления движением, и в качестве отдельных САУ
сюда входят САУ тока т.э.д., САУ пневматического тормоза, САУ
скорости, САУ времени хода и т.п.

САУ э.п.с. выполняют автоматическое ведение поезда по пере¬
гону, включая трогание и разгон, торможение у платформ (для пас¬
сажирских и пригородных поездов, а также поездов метрополите¬
на), обеспечивая выполнение графика движения с минимальным
расходом электроэнергии на тягу поездов. Поэтому САУ э.п.с. на¬
зывают системами автоведения поездов (САВП) [29].

Несмотря на высокий уровеньавтоматизации, достигаемый с при¬

менением САУ, в этих системах за машинистом остаются важные
функции по обеспечению безопасности движения и управления дви¬
жением. Поэтому САУ э.п.с. являются автоматизированными сис¬
темами управления.

Телемеханическое управление обеспечивает управление объекта¬
ми, удаленными от центрального поста, и применяют его для уп¬
равления отдельными секциями э.п.с., локомотивами, рассредото¬
ченными по длине поезда, а также в комплексных системах управ¬
ления э.п.с., энергоснабжением, сигналами на перегонах и работой
промежуточных станций. В таких комплексных системах обмен ин¬
формацией между движущимися локомотивами и станционными
«напольными» устройствами осуществляется специальными мето¬
дами телемеханики. При этом РИ передается по линиям связи, в
качестве которых используют рельсовые цепи, радиосвязь, провод¬
ные линии, контактную сеть и т.п.

Первые САУ для э.п.с. были разработаны в нашей стране в 50-х —
60-х годах XX в. и получили название «Автомашинист». Первый
«Автомашинист» был выполнен на радиолампах и установлен на

электропоезде CJ . Эта система в целом выполняла заданные функ¬

ции, однако из-за применения радиоламп она была ненадежной. Сле¬
дующие системы САУЭР (электропоездов ЭР1) и САУМ (вагонов
метрополитена), выполненные на феррито-транзисторных ячейках,
работали значительно лучше, но также имели недостаточно высо¬
кий уровень надежности из-за того, что соединения проводов были
выполнены с помощью пайки.

Новое развитие эти системы получили с появлением больших
интегральных микросхем (БИС) и микропроцессорных систем уп-
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равления (МПСУ). В настоящее время МПСУ установлены на
электровозах ЭП1, ЭП10, 2ЭС5К, а также они используются на
всех вновь выпускаемых типах электровозов — 2ЭС4К, 2ЭС6 и
электропоездов. Эти МПСУ выполняют функции управления
безопасностью движения (КЛУБ-М), автоматического управле¬
ния пневматическими тормозами (САУТ), автоведения поездов
(САВП), автоматического управления скоростью движения, рабо¬

той электропривода с коллекторными или асинхронными т.э.д.,
работой преобразователей для вспомогательных цепей.

1.3. Технико-экономическая эффективность автоматизации

Любое новое устройство, устанавливаемое на локомотиве, долж¬
но компенсировать дополнительные затраты на его изготовление и
установку, т.е. должно окупаться. Кроме того, такое устройство дол¬
жно повышать эффективность работы локомотива, т.е. должно при¬
носить определенный доход. Рассмотрим коротко источники эко¬
номической эффективности автоматических систем, применяемых
на электроподвижном составе.

Системы автоматического управления э.п.с. обеспечивают по¬
вышение тяговых (тормозных) и сцепных свойств, увеличивают
среднеэксплуатационный КПД, уменьшают потребление реактив¬
ной мощности (на э.п.с. переменного тока) и т.п. Эти системы мо¬
гут выполнять функции по обеспечению безопасности движения,
решают задачи автоведения поезда с минимальным расходом элек¬
троэнергии за заданное графиком движения время хода по пере¬
гонам.

Автоматическое управление вспомогательными устройствами
позволяет использовать с этой целью электропривод с асинхрон¬
ными двигателями и современными компактными и надежными
полупроводниковыми преобразователями, что обеспечивает сни¬
жение расхода электроэнергии на собственные нужды и на ремонт
устройств собственных нужд.

Внедрение э.п.с. с коллекторными тяговыми двигателями и не¬
зависимым возбуждением (электровоз 2ЭС6), а также с асинхрон¬
ными тяговыми двигателями вообще невозможно без автомати¬
ческого управления напряжением и частотой (в случае использо¬
вания асинхронных) тяговых двигателей. В такой же мере системы

10



автоматики необходимы и для высокоскоростного подвижного со¬
става, при управлении которым на принятие решений и выпол¬
нение управляющих действий остается настолько мало времени,
что машинист физически не может обеспечить безопасность дви¬
жения.

Таким образом, применение систем автоматики на э.п.с. обеспе¬
чивает реализацию следующих источников экономической эффек¬
тивности:

— снижает расход электроэнергии на тягу поездов;

— дает возможность повысить техническую скорость движения
или массу поезда, что в конечном итоге ведет к повышению пропуск¬
ной и провозной способности железных дорог;

— повышает сохранность оборудования э.п.с. и снижает расхо¬
ды на его ремонт и т.п.

Некоторые источники эффективности трудно оценить экономи¬
чески. К ним относятся улучшение условий труда локомотивных
бригад, повышение безопасности движения и т.п.



Глава 2. ФУНКЦИОНАЛЬНЫЕ СХЕМЫ САУ

ЭЛЕКТРОПОДВИЖНОГО СОСТАВА

2Л. Понятие о функциональной схеме и устройстве

В автоматике помимо принципиальных, монтажных и т.п. схем
принято использовать функциональные и структурные схемы (пос¬
ледние будут рассмотрены в последующих главах).

Функциональная схема подразделяет исследуемую систему на раз¬
личные устройства в зависимости от выполняемых ими функций.

Устройство состоит из отдельных элементов. Элементом назы¬
вают конструктивно обособленную часть системы, выполняющую
определенные функции. Такими элементами могут быть электри¬
ческие машины, аппараты, преобразователи и т.п. Автоматические
системы различной физической природы можно представить в виде
однотипных функциональных схем, состоящих из одинаковых фун¬
кциональных элементов.

Элементы подразделяют по принципу действия (электромехани¬
ческие, электромашинные, электромагнитные, пневматические,
электронные и т.п.), по исполнению (общепромышленное, тяговое
и т.п.), по конструкции, а также по функциональному назначению.

В зависимости от функционального назначения устройства сис¬
тем автоматического управления подразделяют на:

— задающее устройство (ЗУ) — вводит в САУ сигнал g, пропорци¬
ональный заданному значению регулируемой величины у\ т.е. вво¬
дит начальную информацию (НИ);

— программное устройство (ПРУ) — преобразует сигнал g в g* по
заданной программе;

— измерительное устройство (ИУ) — вводит в САУ сигнал z,
пропорциональный текущему значению регулируемой величины у,

а также сигналы q* , характеризующие уровень действующих возму¬
щений qi и состояние окружающей среды, т.е. обеспечивает САУ
рабочей информацией;
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— устройство сравнения (УС) — сравнивает сигналы g и z и опре¬
деляет ошибку или рассогласование:

(2.1)A =g-z;

управляющее устройство (УУ) — формирует управляющий сиг¬
нал х в зависимости от рассогласования А и уровня действующих воз¬
мущений q* :

х=М, q*),

т.е. вырабатывает алгоритм управления.
Часто устройство УУ делят на две части: регулятор (Р), формиру¬

ющий сигналы х и собственно управляющее устройство, реализую¬
щее алгоритм управления (например, формирование и подачу им¬
пульсов открывания тиристоров на определенные плечи преобразо¬
вателя);

— исполнительное устройство (ИсУ) — осуществляет непосред¬
ственное воздействие ц на объект управления в зависимости от сиг¬
нала х.

При автоматизации э.п.с. принято управляющее устройство раз¬
делять на две части — собственно управляющее устройство, форми¬
рующее закон управления, и устройство преобразования УП сигна¬
ла управления в сигнал, необходимый для управления исполнитель¬
ным устройством. Такое разделение вызвано тем, что при ручном
управлении э.п.с. сигнал управления от ЗУ (на э.п.с. — контроллер
машиниста) передается на УП.

Исторически сложилось, что в технической документации на
э.п.с. фактическую реализацию устройства управления называют
регулятором. Поэтому в данной книге для сведения терминологии к
принятой в теории управления введено понятие «автоматический
регулятор», отличающийся от регулятора тем, что в его состав вхо¬
дят ИУ, УС и УУ, которые обычно конструктивно выполняют в еди¬
ном блоке.

Изображение всех элементов на
функциональных схемах, кроме устрой-

ства сравнения, показано на рис. 2.1. —
На данном рисунке входным сигна-

(2.2)

вИсУ

лом, подаваемым на элемент, является Рис 2 i Изображение
сигнал х, а выходным — ц.

элемен¬
тов на функциональных схемах
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Рис. 2.2. Изображение устройства сравнения на схемах

Устройство сравнения обозначается на схемах, приведенных на
рис. 2.2, а, б, в.

2.2. Типовые функциональные схемы и принципы управления

Функциональные схемы систем автоматического управления
можно свести к трем основным типам [8], которые соответствуют
различным принципам управления: управлению по возмущению,
управлению по отклонению и комбинированному управлению.

Принцип управления по возмущению был предложен французским
ученым Понселе и впервые реализован русским электротехником
В.Н. Чиколевым во второй половине XIX в. в регуляторах силы све¬
та дуговых электроламп.

Основной причиной, отклоняющей регулируемую величину от
требуемого значения, является воздействие всякого рода возмуще¬
ний. При управлении по рассматриваемому принципу предполага¬
ют, что если измерить величину основного возмущения и всоответствии
срезультатами измерения оказатьуправляющее воздействие на объект,
то можно обеспечить поддержание управляемой величины на заданном
уровне.

Управляющее воздействие х на исполнительное устройство вы¬
рабатывается управляющим устройством на основе сигнала g, про¬
порционального заданному значению управляемой величины, а
также на основе измерения возмущения (помехи или нагрузки) qv
Таким образом, управляющее воздействие х направлено на компен¬
сацию возмущения qt, что должно обеспечивать независимость уп¬
равляемой величины у от возмущения qt. Закон управления в общем
виде является оператором от задающего сигнала и возмущения:

dq_ dV'
’ dt dt

x =f g, q* (2.3)
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Рис. 2.3. Функциональная схема САУ по возмущению

На рис. 2.3 изображена схема, поясняющая принцип управления

по возмущению.
Система управления по возмущению является разомкнутой, в

ней отсутствует обратная связь. Обычно системы управления под¬
вержены воздействию большого количества возмущений. Вместе
с тем, без существенного усложнения удается создать САУ, ком¬
пенсирующую действие одного, реже двух возмущений. В таких
системах обеспечивается независимость только по отношению к
тем возмущениям, которые контролируются. Наличие же некон¬
тролируемых возмущений (для э.п.с. — сцепление у и сопротив¬
ление движению w) приводит к тому, что выдержать точно требу¬
емое значение управляемой величины обычно не удается.

Этот недостаток вызван тем, что при отсутствии в САУ обрат¬
ной связи значение управляемой величины не контролируется и
управляющее воздействие от этой величины не зависит. Поэтому
САУ с управлением по возмущению применяют практически толь¬
ко в качестве составной части более сложных — комбинирован¬
ных систем.

На э.п.с. принцип управления по возмущению использован в
блоке регулирования угла запаса инвертора типа БРУЗ электрово¬
зов ВЛ80Р, ВЛ85 и ВЛ65.

Принцип управления по отклонению (по ошибке) был впервые ре¬
ализован на практике И.И. Ползуновым в 1765 г. в регуляторе уров¬
ня воды в котле паровой машины. Позднее в 1784 г. этот принцип
был использован Дж. Уаттом в регуляторе скорости вращения паро¬
вой машины.

Принцип управления по отклонению (рис. 2.4) состоит в том, что
АР воспринимает сигнал z, пропорциональный текущему значению уп¬
равляемой величины у, сопоставляет его с сигналом g, пропорциональ-
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Рис. 2.4. Функциональная схема САУ по отклонению (ошибке)

ным заданному ее значению, и в зависимости от отклонения (ошибки,
рассогласования) А = g — z вырабатывает управляющее воздействие х
таким образом, чтобы эту ошибку свести к минимуму.

Закон управления в этом случае определяется соотношением

dnAdA
x =f А, — (2.4)

dt dt
••5

Основное преимущество САУ, работающих по отклонению, за¬
ключается в способности выполнять задачу управления независимо
от возмущающих воздействий. Выявляя в соответствии с этим зако¬
ном сам факт появления ошибки, система по возможности обеспе¬
чивает ее ликвидацию.

САУ, реализующая принцип управления по ошибке, работает как
замкнутая система, т.е. представляет собой систему с обратной свя¬
зью (см. рис. 2.4). Обратная связь ОС в замкнутой САУ служит для
связи выхода системы с ее входом.

Принцип управления по отклонению широко применен на зару¬

бежном и отечественном э.п.с. в регуляторах скорости, тока и т.п.
Комбинированный принцип управления позволяет получить наибо¬

лее высокое качество управления, так как замкнутую САУ по откло¬
нению дополняют управлением по возмущению (рис. 2.5), совме¬
щая управление по замкнутому и разомкнутому циклам.

В соответствие с этим рисунком, влияние возмущения q j учиты¬
вается управлением по этому возмущению, а действие всех возму¬
щений #2 Яп управлением по отклонению.
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Рис. 2.5. Функциональная схема комбинированной САУ

На э.п.с. в качестве измеряемого возмущения выступает напря¬
жение контактной сети и
ление движению w и коэффициент сцепления \|/ измерить не пред¬
ставляется возможным.

Таким образом, если в системе автоматического управления то¬
ком тяговых электродвигателей э.п.с. применить управление по от¬
клонению и возмущению в виде напряжения в контактной сети, то
появится возможность лучше реализовать заданное значение тока
тяговых двигателей независимо от изменений напряжения в контак-
ной сети. Такая комбинированная САУ была применена на элект¬
ровозе ЭП1 с микропроцессорной системой управления.

так как другие возмущения — сопротив-
КС’

2.3. Классификация систем автоматического управления

Рассмотрим классификацию САУ по следующим основным при¬
знакам.

1. По характеру сигнала. Распорядительные сигналы САУ имеют
малую мощность и легко искажаются различными возмущениями —
помехами, особенно электромагнитными. Для обеспечения нормаль¬
ной работоспособности САУ должны обладать высокой помехоус¬
тойчивостью, т.е. их работа не должна нарушаться при воздействии
помех. С этой целью обычно выполняют преобразования непосред¬
ственных (аналоговых) сигналов, с помощью которых передается
распорядительная информация. По характеру распорядительных
сигналов различают системы с непрерывным сигналом, импульсным,
модулированным и цифровым сигналами.
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Системы с непрерывным сигналом отличаются тем, что информа¬
ция z(/) и (или) q*(t) вводится в эти системы в виде непрерывных
сигналов. Их подразделяют на две подгруппы:

•системы с непосредственным вводом сигнала — это такие систе¬
мы, в которых распорядительный сигнал, например z(t), непосред¬
ственно используется для целей управления без всяких преобразо¬

ваний (рис. 2.6, а). Эти системы являются наименее помехозащи¬
щенными;

• системы с модулированным сигналом. Модуляцией называют
наложение информационного сигнала z(/) на сигнал-переносчик.
Информационный сигнал называют модулирующей функцией. При
гармоническом переносчике результирующий сигнал z *(/) будет
непрерывным. При этом можно выполнить амплитудную, частот¬
ную или фазовую модуляции, при которых изменяется соответствен¬
но амплитуда, частота или фаза сигнала-переносчика.

6а

zz Z*0)

+Z*

\+

t t

—г*

гв /п X

ZcpMZZ

t'п 'п t

Рис. 2.6. Виды сигналов САУ:
а — непрерывный (аналоговый); б — релейный; в — ступенчатый;

г — с широтно-импульсной модуляцией
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Системы с импульсным сигналом отличаются тем, что непре¬
рывная информация z(t) и (или) q*{t) вводится в эти системы в
виде импульсов, отличающихся определенными импульсными
признаками: полярностью, амплитудой, частотой и т.п. Эти сис¬
темы повышают помехозащищенность и подразделяются на не¬
сколько групп:

• системы с релейным сигналом (релейные САУ) — см. рис.
2.6, б. В таких системах независимо от конкретного вида непре¬
рывного сигнала z(t) распорядительный сигнал z *(/) на выходе
релейного преобразователя принимает только одно из двух зна¬
чений +z* или —z*, соответствующих знаку непрерывного сиг¬
нала. За счет такого преобразования влияние помехи на сигнал
z *{t) исключается.

• системы со ступенчатым сигналом — см. рис. 2.6, в. В этих
системах непрерывный сигнал заменяется постоянным сигналом
длительностью tn, величина которого равна величине сигнала z(t)
в момент времени /, /п (/ =0, 1,2, ...);

•системы с импульсной модуляцией. В этих системах сигналом-
переносчиком информации является последовательность импуль¬
сов, в которой выполняют амплитудно-, частотно-, широтно- или
фазоимпульсную модуляции, при которых модулирующий сигнал из¬
меняет соответственно амплитуду, частоту, ширину (см. рис. 2.6, г)
или положение импульса относительно тактовых отметок;

•системы с кодовыми сигналами, в которых информационному
сигналу соответствует некоторый набор импульсных признаков.
Например, полярность и число импульсов. На э.п.с. применяют чис¬
ловой кодовый сигнал в системах автоматической локомотивной
сигнализации АЛСН;

•системы с цифровым сигналом, в которых непрерывный (ана¬
логовый) распорядительный сигнал преобразуется в цифровую
форму с помощью аналогово-цифрового преобразователя (АЦП),
выполняющего квантование входного аналогового сигнала z(t) по
уровню и его временную дискретизацию.

Подробнее процессы модуляции и аналого-цифрового преобра¬
зования рассмотрены в главе 7.

Системы со случайными сигналами. В этих системах информация,
поступающая в виде непрерывного или импульсного сигнала, пред¬
ставляет собой случайный процесс. На э.п.с. такими случайными
процессами являются сигналы uKC(t), \ц(/) и w(/). Для расчета и про-
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ектирования систем со случайными сигналами применяют специ¬
альные методы.

2. По принципу действия системы автоматического управления
подразделяются на:

• системы стабилизации, которые поддерживают регулируемую
величину на заданном уровне. Реализуются с помощью принципа
регулирования по отклонению (см. рис. 2.4);

•программные системы, которые обеспечивают изменение регу¬
лируемой величины по заданной программе. Содержат программ¬

ный элемент;
• следящие системы, осуществляющие слежение за какой-либо

координатой объекта. Заданный сигнал в этих САУ изменяется не¬
прерывно, и регулируемая величина должна изменяться в соответ¬
ствии с изменением заданного сигнала. На э.п.с. данные системы
находят применение в системе управления главного переключате¬
ля на электровозах ЧС2, ЧС4, ВЛ80С, а также при управлении то¬
ком двигателя после окончания разгона и выхода на заданную ско¬
рость движения;

• адаптивные (самонастраивающиеся) системы, которые приме¬
няются в условиях неопределенности, связанной с незнанием пара¬
метров ОУ. Такая неопределенность, как правило, возникает из-за
отклонений в свойствах исходных материалов и неоднородности в
технологии изготовления изделий. Кроме того, на э.п.с. изменения
параметров ОУ вызываются изменениями:

— электромагнитных параметров т.э.д. из-за нелинейности его
характеристик и нагрева обмоток в процессе эксплуатации;

— параметров и даже структуры силовых цепей в процессе управ¬
ления, из-за выведения пусковых сопротивлений, переключения

схемы соединения т.э.д., а также из-за изменения силовой схемы
э.п.с. при коммутации тиристорных преобразователей;

— параметров тяговой сети при движении э.п.с. по перегону;

— условий сцепления в зависимости от состояния рельсов, массы
поезда, а также загрузки пассажирами вагона электропоезда или по¬
езда метрополитена.

Самонастраивающиеся САУ подразделяют на три группы:

— прямые самонастраивающиеся системы (рис. 2.7, а). Такие си¬
стемы применяют, когда свойства объектов регулирования и
параметры регулятора полностью определены внешними факто-
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Рис. 2.7. Функциональные схемы самонастраивающихся адаптивных САУ:
а — прямые; 5— непрямые; в — квазипрямые
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рами, доступными прямому измерению. При этом адаптер А пол¬
ностью определяет настройку н автоматического регулятора АР.
На э.п.с. такой способ адаптации применяют для учета массы по¬
езда и загрузки вагона пассажирами. На электропоездах в каче¬
стве сигнала настройки используют величину тока уставки реле
ускорения;

— непрямые самонастраивающиеся системы (рис. 2.7, б). Данная
схема содержит идентификатор И. В таких системах по результа¬
там измерений задающего g и регулирующего р воздействий, а так¬
же реакции у объекта регулирования ОР на это воздействие может
быть выполнена идентификация, т.е. уточнение параметров это¬
го объекта и действующих возмущений q. В зависимости от най¬
денных параметров адаптер А изменяет настройку Н автомати¬
ческого регулятора АР. На э.п.с. этот способ адаптации применяют
для уточнения электромагнитных параметров силовых цепей, мас¬
сы грузового поезда, параметров тормозной системы и т.п.;

— квазипрямые адаптивные системы (рис. 2.7, в). Функциональ¬
ная схема содержит предсказатель П и адаптер А.

Предсказатель состоит из модели предсказания, которая отли¬
чается как от модели объекта, так и от модели регулятора и алго¬
ритма предсказания, в соответствии с которым находит оценки
некоторых вспомогательных параметров, необходимых для рабо¬

ты адаптера А. Таким образом, квазипрямые адаптивные САУ ис¬
пользуют способы управления, отличающиеся от применяемых в
предыдущих системах.

В частности на э.п.с. такие системы применяют для управления
силой тяги с адаптацией по сцеплению. Если в такой системе проис¬
ходит 2—3 повторных срыва сцепления, то снижают силу тяги соот¬
ветствующей оси, а через некоторое время ее вновь повышают и т.п.

3. По числу каналов управления. По этому признаку САУ под¬
разделяют на одноканальные и многоканальные. Под каналом управ¬
ления понимают цепь воздействия на один объект управления. При
наличии нескольких таких цепей или нескольких объектов систе¬
ма будет многоканальной. На э.п.с. имеется несколько тяговых дви¬
гателей, на каждый из которых можно воздействовать изменяя на¬
пряжение на зажимах ик, коэффициент регулирования поля (3 или
(и) напряжение независимого возбуждения ив. Поэтому в общем
случае САУ э.п.с. являются многоканальными.
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4. По числу контуров управления. По этому признаку САУ подраз¬
деляют на одноконтурные и многоконтурные. В каждый контур уп¬
равления входят функциональные элементы, обеспечивающие уп¬
равление одной регулируемой величиной. На э.п.с. может выпол¬
няться управление скоростью движения, а также токами якоря и
токами возбуждения. Поэтому в общем случае САУ э.п.с. являются
не только многоканальными, но и многоконтурными.

2.4. Типовые функциональные схемы САУ
электроподвижного состава

Системы стабилизации тока и скорости. Такие системы являют¬
ся одноконтурными и наиболее простыми. Работают по замкнутому
циклу, т.е. с управлением по отклонению.

Задающим устройством ЗУ (рис. 2.8) обычно является контрол¬
лер машиниста, с помощью которого устанавливают заданное зна¬
чение тока /3 или скорости v3 — сигнал иу. В качестве ИсУ в систе¬
мах с релейно-контакторным управлением используют групповой
переключатель, который в системах стабилизации скорости на элек¬
тропоездах, поездах метро и электровозах изменяет сопротивление
пусковых резисторов при разгоне, а также напряжение на двигате¬
лях (при изменении группировки). В этом случае УУ должен задать
номер позиции А группового переключателя. Кроме того, ИсУ мо¬
жет изменять ступенчато коэффициент регулирования поля (3 или

ив при независимом возбуждении тяговых электродвигателей.
Системы стабилизации скорости реализуют абсолютно жесткую

характеристику v = const, наиболее подходящую для тяги, так как
при такой характеристике обеспечиваются наиболее благоприятные
условия сцепления колеса с рельсом.

Р «к,
NАи х, *2 / V

ПУ1 ИсУ ОУЗУ ПУ2 УУ
R,а

т
Р«2

ИУ

Рис. 2.8. Функциональная схема одноконтурной САУ стабилизации тока или
скорости э.п.с.
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Для уменьшения частоты переключения группового переключа¬
теля в состав Р вводят промежуточное устройство ПУ1 с зоной не¬
чувствительности шириной в 10—15 км/ч. Когда скорость движения
выходит за пределы этой зоны, на выходе ПУ1 появляется сигнал Jtj
о включении режима тяги.

При этом ПУ2 управляет групповым переключателем так, чтобы
реализовать ходовую позицию, соответствующую фактической ско¬
рости движения. Если отклонение по скорости Аи не выходит за пре¬
делы зоны нечувствительности, то ПУ1 формирует сигнал хя, соот¬
ветствующий режиму выбега.

На современном э.п.с. в качестве ИсУ применяют полупровод¬
никовые силовые преобразователи, которые могут выполнять плав¬
ное изменение ик, ив или (и) |3.

Для этого УУдолжен формировать импульсы отпирания полупро¬
водниковых приборов, которые для импульсных преобразователей
ИП сдвинуты на величину т, адля выпрямительно-инверторных пре¬
образователей (ВИП) должны появляться со сдвигом на угол а по
отношению к моменту перехода кривой питающего напряжения че¬
рез ноль. Обычно полупроводниковые исполнительные элементы ис¬
пользуют в одноконтурных системах стабилизации тока, а системы
стабилизации скорости в этом случае выполняют многоконтурными.

Рассмотрим функциональную схему такой системы стабилиза¬
ции тока, в которой в качестве ИсУ используется полупроводнико¬
вый преобразователь. В этой схеме при нулевом рассогласовании,
когда значение регулируемой величины (тока двигателя) стало рав¬
но заданному, то рассогласование Дм = 0, т = 0 (а = 180°) и «к = 0, что
не обеспечивает нормальных условий работы э.п.с. Для того чтобы
обеспечить нормальную работу, необходимо, чтобы при Аи = 0 ик, а
следовательно, и т или ос оставались на ранее достигнутом уровне.
С этой целью в качестве ПУ2 необходимо применить элемент, вы¬

полняющий математическую операцию
интегрирования.

Для упрощения анализа в качестве
ПУ1 применим переключательный эле¬
мент с зоной нечувствительности, ста¬
тическая характеристика которого при¬
ведена на рис. 2.9. Эту характеристику
можно описать следующим аналитичес¬
ким выражением:

дх
X,

-6
5 Дм

X,

Рис. 2.9. Статическая харак¬
теристика элемента ПУ1
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jCp при AM >5;

О, при — 5<Ам<5;

-Хрпри Ам<-5.

Сигнал на выходе ПУ2 определяется выражением

(2.5)х=<

'2

Х2 - jxjflf/. (2.6)

'i
Поскольку в соответствии с (2.5) принимает постоянное зна¬

чение, не зависящее от времени, то (2.6) можно преобразовать к сле¬
дующему виду:

'2
*2 =Х{ \dt = xl(t2-tl). (2.7)

'i
Таким образом, введение ПУ2, выполняющего операцию интег¬

рирования, действительно обеспечивает нормальные условия рабо¬

ты системы стабилизации тока.
На рис. 2.10 приведены диаграммы сигналов одноконтурной си¬

стемы стабилизации тока э.п.с., поясняющие работу промежуточ-

А

б,
0

-I -1 -1. -1 - /-51

х,

*1 Р,0

ZXL
*2

т
Рис. 2.10. Диаграммы сигналов водноконтурной системе стабилизации тока э.п.с.
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ных устройств ПУ1 и ПУ2. На первом графике показано изменение
сигнала рассогласования Д(/). На этом графике отмечена и зона не¬
чувствительности, ширина которой составляет 28. На втором графике
показан сигнал *j(/) на выходе ПУ1, который принимает значения

+JCJ или —Xj только в те интервалы времени, когда Д(0 > 8. В этих
интервалах выполняется интегрирование сигнала Xj(/), результат
которого показан на третьем графике. Как видно из этого графика,
выполнение операции интегрирования и приводит к тому, что при
значениях Xj = 0 сигналы х2, а следовательно, т(а) и ик остаются на
ранее достигнутом уровне.

На электропоездах с релейно-контакторным управлением функ¬
ции ПУ2 выполняет привод главного контроллера, угол поворота
которого равен интегралу от угловой скорости вращения.

Системы стабилизации тока реализуют «абсолютно» мягкую ха¬
рактеристику /3 = const, неприемлемую для тяги, так как при такой
характеристике ухудшаются условия реализации сцепления колес с
рельсами. Поэтому система стабилизации тока используется как
внутренний контур в многоконтурных системах регулирования.

Системы программного управления. Программные САУ на э.п.с.
можно разделить на две группы: задающие программу движения по
перегону, т.е. зависимость v(s) или выполняющие ограничение на
характеристики т.э.д. и локомотива.

Первые системы применялись до появления микропроцессорной
техники и позволяли управлять локомотивом по заранее рассчитан¬
ным траекториям движения v(s).

Они оказались несовершенными, так как условия движения и
коэффициент сцепления \|/ и сопротивление движению w, темпера¬
тура, влажность и т.п. значительно изменяются в процессе движе¬
ния и заранее рассчитанные кривые v(s) значительно отличаются от
реализуемых в процессе движения. Кроме того, применение микро¬
процессорных систем управления позволяет выполнять расчет тра¬
ектории v(s) непосредственно в процессе движения и необходимость
в программных САУ, задающих программу движения, отпала.

Многоканальная САУстабилизации тока (скорости). Обычно САУ
э.п.с. является многоканальной, так как содержит несколько объек¬
тов регулирования (т.э.д.), характеристики которых не совпадают и
поэтому их не всегда можно заменить одним эквивалентным тяго¬
вым двигателем. Кроме того, на каждый т.э.д. можно воздействовать

КС’
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разным каналом управления, изменяя ик, (3 или (и) ив. В связи с этим
возникает задача выравнивания регулируемых величин / или v тяго¬
вых электродвигателей т.э.д. При этом в системе стабилизации тока
необходимо выделить сигнал, пропорциональный большему току
двигателя /б в режиме тяги или меньшего тока /м в режиме электри¬
ческого торможения соответственно.

В системе стабилизации скорости в режиме тяги выделяют сиг¬
нал, пропорциональный наименьшей скорости вращения т.э.д. (vM),
так как увеличение скорости вращения вызывает ухудшение усло¬
вий сцепления колес с рельсами и для улучшения этих условий для
соответствующей колесной пары следует уменьшить ее вращающий
момент, чтобы снизить скорость. В режиме электрического тормо¬
жения выделяют сигнал, пропорциональный наибольшей скорос¬

ти вращения v6, так как уменьшение скорости связано с возмож¬
ностью появления юза, что недопустимо, и снижение тормозного
момента соответствующей колесной пары повышает скорость ее
движения.

Для выравнивания / и v необходимо в составе САУ реализовать
индивидуальные контуры воздействия на двигатель с индивидуаль¬

ными регуляторами. В контуре индивидуального воздействия пред¬
ставляется возможным управлять т.э.д. только путем изменения (3
или ив. Кроме того, изменение (3 можно выполнять только после
выхода на автоматическую характеристику v(/) локомотива, когда
напряжение ик на зажимах т.э.д. становится равным номинально-
му ик = и и дальнейшее повышение ик оказывается невозможным.

Рассмотрим для примера функциональную схему многоканаль¬
ной САУ стабилизации тока тяговых электродвигателей последова¬
тельного возбуждения с выравниванием их токов (рис. 2.11). Эта схе¬
ма содержит три группы регуляторов:

— регулятор тока РТ, управляющий изменением напряжения ик
на зажимах всех параллельно-включенных т.э.д.;

— регулятор возбуждения общий РВО, изменяющий коэффици¬
ент регулирования поля |3 одновременно всех электродвигателей пос¬
ле выхода на автоматическую характеристику;

— регуляторы индивидуального воздействия РИВ-у (/= 1,2, ..., п,
где п — количество тяговых двигателей), индивидуально изменяю¬
щие коэффициенты регулирования поля р • каждого у-го т.э.д. так,
чтобы обеспечить выравнивание токов всех двигателей;
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Рис. 2.11. Функциональная схема многоканальной САУ стабилизации тока
(скорости)

— для учета разброса характеристик и параметров параллельно
включенных т.э.д., токи каждого из них Ш) измеряются отдельными
измерительными устройствами ИУу, выходные сигналы м2у которых
поступают на вход промежуточного устройства ПУ2. Это устройство

выполняет сравнение входных сигналов и выделяет сигналы м2_б Для

системы стабилизации тока или «2-м для системы стабилизации
скорости (в режиме тяги). Кроме того, оно выделяет сигналы Дм2у,
характеризующие отклонение токов т.э.д. от наибольшего или наи¬
меньшего значений (сигналы м2_б или м2_м).

Таким образом, для системы стабилизации тока

Аиу=и2-6~иу’
а для системы стабилизации скорости

(2.10)

(2.11)AU2j=U2j-U2-u

Сигнал м2_б («2-м) является сигналом главной обратной связи ГОС
и поступает на вход устройства сравнения УС, где сравниваются с
сигналом и\ от задающего элемента. Рассогласование Аи = ия — м2_б

28



с выхода УС поступает на вход промежуточного устройства ПУ1. Это
устройство определяет последовательность работы каналовуправления.
Вначале оно передает сигнал Аи на вход регулятора тока РТ. Этот ре¬
гулятор увеличивает сигнал мр1 на своем выходе и соответственно
изменяет сигналы а или т, управляющие исполнительным устрой¬
ством ИсУ1, для повышения напряжения ик на зажимах т.э.д. от нуля
до номинального значения и
матическую характеристику v(/) локомотива.

После достижения напряжением ик номинального значения про¬
межуточное устройство ПУ1 передает сигнал Аи на вход общего регу¬
лятора возбуждения РВО, обеспечивающего увеличение сигнала мр2
для уменьшения коэффициента регулирования поля (3 на всех т.э.д.
и, следовательно, дальнейшее увеличение их токов (тяговых момен¬
тов). При этом РВО продолжает выполнять стабилизацию тока (ско¬
рости) тяговых электродвигателей.

Одновременно с этим из-за разности характеристик т.э.д. и ко¬
лесно-моторных блоков величины будут различными. Для их
выравнивания сигналы Ам2у, характеризующие соответственно от¬
клонения тока (скорости), подаются на все регуляторы индивиду¬
ального воздействия РИВ-у. Сигналы иру с выходов этих регулято¬
ров суммируются с сигналом ир2 с выхода РВО и обеспечивают раз¬
личие в величинах Ру разных т.э.д. для выполнения поставленной
задачи — выравнивания тока или скорости.

Регуляторы РИВ-у вступают в работу еще до выхода на автомати¬
ческую характеристику вместе с появлением токов ip стремясь сде¬
лать токи всех т.э.д. одинаковыми и равными наибольшему. Поэто¬
му даже в начальный момент трогания величины Ру могут оказаться
различными и меньшими единицы и при работе регулятора РТ, еще
до выхода на автоматическую характеристику, на отдельных т.э.д.
будет выполнено «ослабление» поля. Кроме того, регуляторы РИВ-у
должны действовать «медленнее», чем РВО, так как процессы от¬
клонения /у от наибольшей величины протекают медленнее, чем про¬
исходит изменение тока при изменении ик или р.

Программные САУ, реализующие ограничения на характеристи¬
ки локомотива (рис. 2.12) позволяют наиболее полно реализовать его
мощность.

При этом соблюдаются имеющиеся ограничения на скоростную
характеристику локомотива v(7), к которым на э.п.с. с коллекторны-

соответствующего выходу на авто-
КН’
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2
ми тяговыми двигателями отно¬
сятся:3Л

1— v = vK — ограничение по
конструкционной скорости;

2 — v = v(er) — ограничение
по реактивной э.д.с. тягового
электродвигателя (данное огра-

44
V4 55

б б
7

А>гр(яч) Апах

Рис. 2.12. Ограничения, накладываемые
на характеристики т.э.д. локомотива

Апах ничение учитывается для тяго¬
вых двигателей без компенса¬
ционной обмотки);

3 — v = v(eK) — ограничение
по коммутации;

4 — v = v(7) — естественная характеристика;
5 — v = v(i7c„) — ограничение по сцеплению;
6 — v = v(/max) — ограничение по максимальному току;
7— v = v(I

' в max
дения при рекуперативном торможении.

Таким образом, наибольшее значение тока, которое может реа¬
лизовать т.э.д., зависит от скорости и должно учитываться в систе¬
мах стабилизации тока. Так, например, при скорости движения v4
можно реализовывать ток не больший, чем Aorp(v4), что должна учи¬
тывать система автоматического регулирования. Поэтому функцио¬
нальную схему (см. рис. 2.7) системы стабилизации тока дополняют
устройством ограничения УО и промежуточным устройством ПУ
(рис. 2.13).

В этой схеме для работы УО с помощью соответствующих изме¬
рительных устройств измеряются значения v и /в тяговых электро¬
двигателей. В зависимости от этих величин, а также от сигналов АЛС

) — ограничение по максимальному току возбуж-

& X, X р
ПУ РТ УУЗУ ОУИсУ

/ v

<?огр
Z1АЛС ИУ1

ОУ
А

ИУ2

Рис. 2.13. Функциональная схема программной САУ током
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элемент ОУ вырабатывает сигнал пропорциональный наболь¬
шему из возможных токов т.э.д. в соответствии с ограничениями на
характеристики локомотива. Этот сигнал, а также сигнал g3 от зада¬
ющего устройства ЗУ поступают на промежуточное устройство ПУ,
которое пропускает на свой выход минимальный из входных сигна¬
лов gmirr Сигнал gmin является задающим для контура стабилизации

тока, который обеспечивает равенство фактического значения тока
Zj и минимального gmin.

Измерение v и /в носит вспомогательный характер, и поэтому си¬
стема остается одноконтурной. На отечественных электровозах ВЛ85,
ВЛ65 и ЭП1 промежуточное устройство ПУ названо элементом ИЛИ-
min. Кроме того, из всех ограничений на этих электровозах реализу¬
ется только ограничение v = v(eK) в виде /в/ />0,43.

На э.п.с. с асинхронными т.э.д. учитывают ограничение по мощ¬
ности тягового двигателя и инвертора.

Многоконтурные СЛУэ.п.с. Многоконтурные САУ подразделяют¬
ся на три вида:

•системы подчиненного управления, в которых один контур (на¬
ружный) является основным (контур скорости), а другой (внутрен¬
ний) подчиненным (контур тока).

• селективные (избирательные) системы, в которых имеется два
равноправных контура (например, контуры управления тока яко¬
ря /я и тока возбуждения /в), работающих в определенной последо¬
вательности;

• комбинированные системы, в которых имеются подчиненные и
селективные контуры.

Рассмотрим коротко первую и последнюю разновидности этих
систем.

Системы подчиненногорегулирования. Такие системы используются
на э.п.с. с двигателями последовательного возбуждения для управ¬
ления тока т.э.д. (внутренний контур) и скорости движения (внешний
контур).

В таких САУ (рис. 2.14) предусмотрено два задающих устрой¬
ства: задатчик скорости ЗУ1 и задатчик тока ЗУ2, представляющих
собой рукоятки контроллера машиниста КМ. При этом ЗУ1 вво¬
дит в САУ сигнал g{, пропорциональный заданной скорости v3. УС1
определяет рассогласование по скорости А1? которое поступает на
регулятор скорости PC, являющийся управляющим устройством
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Рис. 2.14. Функциональная схема двухконтурной системы автоматической
стабилизации скорости

УУ1. Кроме того, на этот элемент от ЗУ2 поступает сигнал g2§, про¬
порциональный наибольшему допустимому току. PC вырабатыва¬

ет сигнал g2, пропорциональный заданному значению тока так, что¬
бы выполнялось условие g2 < g2б.

Внутренний контур, контур стабилизации тока, по сигналу g2
выполняет поддержание фактического значения тока i на заданном
уровне с помощью автоматического регулятора АР2, в состав кото¬
рого входит полный набор функциональных элементов, в то время
когда в API входят только УУ1 и ИУ1.

В начале трогания, когда v < v3 (gj), на выходе УУ1 через некото¬
рое время появляется постоянное значение g2, и внутренний контур
будет работать как система стабилизации тока, «отрабатывая» это
заданное значение. После того как скорость поезда возрастет и срав¬
няется с заданной, будут возникать изменения v, вызываемые из¬
менениями сопротивления движению. Это ведет к изменению сиг¬
нала g2, и внутренний контур перейдет в режим следящей системы,
обеспечивая изменение тока в зависимости от изменения g2. При
движении на подъем величина А будет положительной и сигнал g2
также будет больше нуля. При движении под уклон сигнал Aj будет
уменьшаться и в какой-то момент времени станет отрицательным.
Это вызовет снижение g2 до нуля, а затем, когда g2 станет отрица¬
тельным, САУ может по команде машиниста перейти в режим элек¬
трического торможения.
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Многоконтурная комбинированная САУс регулированием скорости,
тока якоря и тока возбуждения. На рис. 2.15 изображена функцио¬
нальная схема многоконтурной комбинированной САУ. На этой схе¬
ме все функциональные элементы, кроме задатчиков, объекта уп¬
равления и устройств сравнения, показаны как автоматические ре¬
гуляторы по аналогии с рис. 2.14. В этой схеме контроллер машиниста
КМ оборудован тремя рукоятками задатчиков: скорости ЗС, тока
якоря ЗТЯ и тока возбуждения ЗТВ.

Внешний контур регулирования скорости с регулятором API так
же, как и в предыдущем случае, является основным. Внутренние се¬
лективные контуры регулирования тока якоря и тока возбуждения с
регуляторами АР2 и АРЗ соответственно являются вспомогательны¬
ми. При трогании и разгоне сигнал задается пропорциональным
максимальному току возбуждения, а сигнал g2 нарастает, увеличи¬
вая /я и, следовательно, увеличивая силу тяги и скорость движения
локомотива. После выхода на автоматическую характеристику, ког¬
да ик = ия, в работу вступает контур / , уменьшая ив или (3 так, что¬
бы обеспечитьдальнейший рост силы тяги и скорости. Реальные схе¬
мы автоматики э.п.с. одновременно являются многоконтурными и
многоканальными.

§зб
ЗТВ

<§26
ЗТЯ АР2 —к

<§2СУ1 СУ2 v

*яОУAPIЗС

*в1 СУЗ

Ч2ь
S3

км "вАРЗ
Р

Рис. 2.15. Функциональная схема многоконтурной комбинированной САУ
с регулированием скорости, тока якоря и тока возбуждения
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2.5. Функциональные схемы САУ, применяемые
на отечественном электроподвижном составе

САУ скоростью э.п.с. с релейно-контакторной системой управле¬
ния. Регулирование скорости движения такого э.п.с. может быть осу¬
ществлено с использованием широко распространенных групповых
или индивидуальных переключателей (рис. 2.16). Здесь УУ преобра¬
зует рассогласование А = g — Zj + z2 в номер позиции У группового
переключателя. В цепь обратной связи этой функциональной схе¬
мы, помимо ИУ1, измеряющего скорость движения, введено еще
одно измерительное устройство ИУ2, на выходе которого сигнал z2
пропорционален ускорению. Эта дополнительная обратная связь по¬
зволяет улучшить работу схемы при управлении таким инерцион¬

ным объектом, как поезд.
САУ э.п.с. с тиристорными преобразователями. Наиболее перс¬

пективными системами автоматического управления э.п.с. явля¬
ются многоконтурные САУ с использованием в качестве исполни¬
тельного устройства тиристорного преобразователя.

Функциональная схема системы автоматического управления
электровоза ВЛ85, реализованная в виде блока автоматического уп¬
равления типа БАУ-250, представляет собой систему автоматичес¬
кого управления режимами тяги и рекуперативного торможения и
позволяет выполнять управление электровозами по системе мно¬
гих единиц [24]. Она выполнена как многоконтурная система под¬
чиненного регулирования, причем в режиме тяги она работает как
двухконтурная с контурами регулирования скорости и тока, а в ре¬
жиме рекуперации — как трехконтурная с контурами регулирования
скорости v, силы тяги FK (торможения Вк) и тока возбуждения /

N ц— ИсУ- ОУ
8 А v

ЗУ УУ

+

Z2
zl

ИУ1

ИУ2

Рис. 2.16. Функциональная схема САУ скоростью э.п.с. с релейно-контактор¬
ной системой управления
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В режиме тяги функциональная схема (рис. 2.17, а) включает в
себя задатчики тока ЗТ и скорости ЗС контроллера машиниста КМ,
регулятор скорости PC, промежуточное устройство ИЛИ1-min, уст¬
ройство ограничения тока якоря УТЯ, задатчик интенсивности ЗИ1,
регулятор тока якоря РТЯ, согласующее устройство СоУ1, исполни¬
тельное устройство ИсУ1 — четырехзонный выпрямительно-инвер¬
торный преобразователь, объекты управления ОУ1, представляющий
собой цепь выпрямленного тока электровоза, ОУ2, выполняющий
преобразование тока в силу тяги электровоза, и ОУ4, соответствую¬
щий механической части электровоза.

При пуске заданное значение тока якоря / через элементы
ИЛИ 1 -min, УТЯ и ЗИ1 поступает на устройство сравнения УС1.
Элемент ЗИ 1 обеспечивает плавное увеличение заданного значе¬
ния тока до значения, соответствующего положению рукоятки ЗТ.
Рассогласование Д2 между сигналами, пропорциональными задан¬
ному и текущему значениям тока двигателя, отрабатывается регу¬
лятором РТЯ, работающим в режиме стабилизации.

Такая структура системы обеспечивает разгон электровоза с за¬
данным ЗТ значением тока тяговых двигателей до заданного ЗС
значения скорости движения. После этого САУ переходит в ре¬
жим стабилизации скорости. В этом режиме задание тока опреде¬
ляется регулятором скорости PC, что обеспечено включением в
схему элемента ИЛИ1-min, пропускающего на свой выход мини¬
мальный из входных сигналов. Поскольку при пуске фактическое

значение скорости всегда меньше заданного, сигнал на выходе PC
всегда больше, чем сигнал на выходе ЗТ. Поэтому в режиме пуска
эта САУ работает как одноконтурная система стабилизации тока.
После достижения заданной скорости движения сигнал на выхо¬
де PC становится меньше сигнала на выходе ЗТ и САУ начинает
работать как двухконтурная.

Устройство СоУ1 обеспечивает согласование сигналов РТЯ и
управляющего устройства УУ1, в качестве которого использова¬
ны соответствующие элементы блока управления выпрямитель¬
но-инверторным преобразователем типа БУВИП-133.

При увеличении угла регулирования ар и, следовательно, повы¬
шении напряжения мк до максимального значения и при наличии
положительного рассогласования по скорости Aj> 0 согласующее
устройство СоУ1 формирует сигнал на включение регулятора маг-
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нито-движущей силы Р}
тирование обмотки возбуждения тягового двигателя с помощью
включения соответствующих контакторов. Элемент УТЯ ограни¬
чивает ток якоря допустимым максимальным значением /тах.

В режиме рекуперативного торможения в БАУ-002 применена

который выполняет ступенчатое шун-
МДС’

трехконтурная САУ, осуществляющая управление скоростью движе¬
ния электровоза, силой торможения и током возбуждения (рис.

2.17, б). В ее состав входят задатчики силы торможения ЗСТ и скоро¬
сти ЗС контроллера машиниста КМ, регулятор скорости PC, эле¬
мент ИЛИ2-пнп, ограничитель тока якоря УТЯ, задатчик интенсив¬
ности ЗИ2, регулятор силы торможения РСТ, устройство ограниче¬
ния силы торможения по коммутации УСТ, исполнительные уст¬
ройства ИсУ1, ИсУ2 и объекты управления ОУ1—ОУ4. В качестве
ИсУ2 использована выпрямительная установка возбуждения типа
ВУВ-001.

Контуры регулирования тока возбуждения и силы торможения

являются внутренними, а контур регулирования скорости — внеш¬
ним. Нелинейный преобразователь НП выполняет функцию разде¬
ления каналов управления током якоря / и током возбуждения /
следующим образом: до значения тока возбуждения тяговых двига¬
телей, равного 880 А, управление тормозной силой осуществляется
изменением тока возбуждения тяговых двигателей, а при токе воз¬
буждения, равном 880 А, управление осуществляется путем измене¬
ния э.д.с. силового трансформатора при постоянстве тока возбуж¬

дения. Управление исполнительными устройствами ИсУ1 и ИсУ2
осуществляется через согласующие устройства СоУ1, СоУ2 и управ¬
ляющие устройства УУ1 и УУ2. В качестве последних также исполь¬
зованы элементы БУВИП-133.

Элемент УСТ выполняет простейший алгоритм ограничения по
коммутации на основе соотношения /в//я = 0,43. Сигнал с выхода
УСТ вместе с сигналами с выхода PC и ЗСТ поступают на вход
ИЛ H2-min, который пропускает на свой выход минимальный из этих
трех сигналов. Это обеспечивает реализацию наименьшего значения
тормозной силы, необходимой для данных условий движения.

Таким образом, САУ электровоза ВЛ85 осуществляет ограниче¬
ния по максимальному току якоря и по коммутации.

В целом блок автоматического управления электровозом ВЛ85
обеспечивает в тяговом режиме стабилизацию тока тяговых двига-
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телей и скорости движения электровоза, а в рекуперативном режи¬
ме — остановочное торможение с заданным значением тормозной
силы, плавное нарастание тормозной силы, изменение значения
силы предварительного торможения в зависимости от скорости дви¬
жения электровоза.

САУуглом запаса инвертора. Важным узлом системы управления
электровозов ВЛ80Р и ВЛ85 является система автоматического уп¬
равления углом запаса инвертора типа БРУЗ, который в виде отдель¬
ной кассеты входит в состав блока управления БУВИП. Эта система
обеспечивает управление углой запаса инвертора по условию

б>83,
где 53 — заданное значение угла запаса.

Увеличение 83ухудшает коэффициент мощности электровоза.Для
повышения коэффициента мощности стремятся уменьшить 83, од¬
нако при этом снижается устойчивость инвертора от опрокидыва¬

ния. В связи с этим система БРУЗ
должна быть достаточно совер¬
шенной, чтобы обеспечить одно¬
временное выполнение этих про¬
тиворечивых требований.

Известно, что в процессе ре¬
куперативного торможения ве¬
личина 53 зависит от угла комму¬
тации у (рис. 2.18):

5з = 71 “ ав “ Y,

где aB = 7t— P = 7i—у— 8 — угол отпи¬
рания вентилей.

Угол у связан следующими со¬
отношениями с током рекупера¬
ции /р, амплитудой напряжения
на вторичной обмотке трансфор¬
матора Um, индуктивным сопро¬
тивлением контура коммутации
выпрямителя Xт и углом ав:

и2

ш

ud

\аР

8У

Рав

h к
/ (О/

Рис. 2.18. Диаграмма напряжений и
токов в режиме рекуперативного

торможения

X I
т рy = arccos cosа -2 -а .

и U в
1)1
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При изменении любого из аргументов Хт, /р, Um или ав величи¬
на у, а следовательно, и 8 будут меняться. При этом у зависит от
внешних факторов и поэтому является возмущением, отклоняю¬
щим режим работы от заданного. В системах автоматики типа БРУЗ
реализовано регулирование по разомкнутому циклу, при котором
управляющий сигнал ав формируется по закону:

п-1
1

IY,-83> (2.12)а =п-вп п

где / = 1,2, ..., п — номер полупериода питающего напряжения.

Здесь суммирование заменяет операцию интегрирования, так как
сигнал yi является дискретным и характеризует длительность про¬
цесса коммутации выпрямителя в каждый полупериод. При этом
введение в закон управления операции суммирования эквивалент¬
но управлению по среднему значению угла у.

Автоматическое управление выпрямителем по закону (2.12) в
режиме рекуперации выполняется в дополнение к управлению уг¬

лом ар.
Для этого функциональную схему (см. рис. 2.17, б) необходимо

дополнить управлением по углу ав. Следует иметь в виду, что объек¬
том управления в данном случае является выпрямительно-инвер¬
торный преобразователь, т.е. исполнительное устройство ИсУ1
функциональной схемы, приведенной на рис. 2.17, б. Таким обра¬
зом, на исполнительное устройство ИсУ (рис. 2.19, а) в режиме ре¬
куперации поступают два управляющих сигнала: ар, изменяющий

значения выпрямленного напряжения ud и напряжения на зажи-

Iя,
=- dt , и ав, обеспечивающие управление по

по
мах двигателя и

закону (2.12).
Измерительное устройство ИУу выделяет из кривой тока /2 вто¬

ричной обмотки трансформатора импульс напряжения и (у), дли¬
тельность которого пропорциональна углу коммутации. Этот сиг¬
нал в регуляторе складывается в соответствии с законом (2.12)
с сигналами и(у), полученными в предыдущие полупериоды, а за¬
тем в устройстве сравнения УС1 образуется сигнал м(оср). Преоб¬
разование последнего в импульс отпирания тиристоров, форми-
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Рис. 2.19. Функциональная схема управления углом запаса инвертора по
разомкнутому (а) и замкнутому (б) циклам

руемый в момент /ар, выполняется специальным управляющим
устройством УУЗ, входящим в состав БУВИП.

Как видно из рис. 2.19, а, регулируемая величина — угол запа¬
са непосредственно не измеряется и цепь обратной связи по 8 от¬
сутствует, поэтому такая САУ является разомкнутой, реализую¬
щей регулирование по возмущению, т.е. по углу коммутации у.

В последнее время появились замкнутые системы регулирова¬
ния выпрямителя по углу запаса 8 или по так называемой вольт-

секундной величине запаса

0,5/
П

ut (8) = \ ud dt,

/(«в+у)
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а также по энергии за время коммутации и запаса. В функцио¬

нальной схеме простейшей из таких систем — замкнутой САУ ста¬
билизации угла запаса (рис. 2.19, б) применены два измеритель¬

ных устройства, выделяющих сигналы, пропорциональные углам
у и 5, а также регулятор угла запаса /§, работающий по отклоне¬
нию А = 83 — 8.

САУреостатным торможением электровозов ВЛ80С. Элект¬
ровозы серии ВЛ80С, управляемые по системе многих единиц,
оборудованы системой автоматического управления электричес¬
ким реостатным торможением с усовершенствованными блоками
БУРТ-16. Устаревшие блоки БУРТ-125, применяемые на ранее вы¬
пущенных электровозах серий ВЛ80С и ВЛ80Т заменяются в насто¬
ящее время на блоки БУРТ-16 и разработанные в МИИТе модер¬
низированные блоки БУРТ-001М.

САУ обеспечивает автоматическое управление режимами:

— предварительного реостатного торможения с плавным нарас¬
танием тормозной силы до 100 кН;

— остановочного реостатного торможения при плавном нараста¬
нии до заданной величины и стабилизации тормозной силы;

— реостатного торможения со стабилизацией заданной скорости
движения на спусках и ограничением тормозной силы;

— замещающего пневматического торможения при отказе элект¬
рического торможения.

Машинист управляет процессом торможения посредством тор¬

мозной рукоятки ТР и задатчика тормозной силы ЗТС пульта управ¬

ления машиниста ПУМ (рис. 2.20). Рукоятка ТР имеет пять фикси¬
рованных положений: 0 — нулевое; П — подготовка схемы силовых
цепей к торможению; ПТ — предварительное торможение; Т — тор¬
можение с шестнадцатью ступенями тормозной силы В3 от 100 до
490 кН (сигнал g], пропорциональный В3, задаваемый задатчиком
тормозной силы ЗТС), а также ФС — фиксация скорости тормозно¬
го режима на спусках.

Тяговые электродвигатели включены по схеме независимого воз¬
буждения. Якорная обмотка каждого электродвигателя нагружена на
индивидуальный тормозной резистор. Восемь обмоток возбуждения

соединены последовательно и питаются от управляемого выпрями¬
теля ВУВ.
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Контур возбуждения т.э.д. с выходным сигналом /в — током воз¬
буждения можно рассматривать как объект управления ОУ1, на ко¬
торый воздействует изменение напряжения контактной сети икс,
контуры якорных обмоток и тормозных резисторов с выходными
сигналами /я — токами якорей — как ОУ2. Электровоз и поезд с вы¬
ходным сигналом v — скоростью движения, на который воздейству¬

ют изменения условий сцепления \j/ и сопротивления движению w,
образуют ОУЗ.

В системе автоматического управления использованы сигналы
обратных связей: Zj — по току возбуждения / — от измерительного
устройства ИУ1, z2 — по току якорных обмоток /я — от ИУ2, а так¬
же z3 — по скорости движения v — от устройства вычисления ско¬
рости УВС.

Система автоматического управления содержит два регулятора:
скорости PC и тормозной силы РТ. Они образуют два соподчинен¬
ных контура регулирования. К внешнему контуру регулирования
относятся: регулятор скорости PC, устройство вычисления скоро¬
сти УВС и устройство ограничения токов УОТ якорей и возбужде¬

ния тяговых электродвигателей. УВС производит вычисление сиг¬
нала z3 скорости движения v по сигналам Zj и z2 измерительных
устройств ИУ1, ИУ2, измеряющих токи возбуждения / и якорей /
тяговых электродвигателей. Сигнал z3 подается одновременно в
устройство памяти УП и устройство сравнения УС1 регулятора ско¬
рости PC.

В режиме остановочного торможения выходной сигнал g2 уст¬
ройства памяти УП равен сигналу z3 устройства УВС, сигнал рас¬
согласования с выхода УС1 Aj = g2 — z3 =0, поэтому регулятор ско¬
рости PC не воздействует на регулятор тормозной силы РТ.

В режиме торможения с фиксацией скорости движения элект¬
ронный коммутатор ЭК отключает устройство памяти УП от уст¬
ройства вычисления скорости УВС. Выходной сигнал g2 УП в этом
режиме является сигналом заданной скорости торможения v3, со¬
ответствующей фактической скорости движения поезда v на мо¬
мент постановки тормозной рукоятки ТР в положение ФС. Устрой¬
ство сравнения УС1 регулятора скорости PC формирует сигнал рас¬
согласования по скорости At= g2 — z3 >0. Сигнал gj задатчика
тормозной силы ЗТС поступает в устройство сравнения УС2 регу¬
лятора скорости PC, который производит уменьшение сигнала gj
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заданной тормозной силы В3 на величину сигнала рассогласования

А), если скорость движения снижается относительно заданной. На
УС2 подается также сигнал А3 превышения ограничения токов
якорей А/оя, если токи якорей т.э.д. превышают величину, уста¬
навливаемую в зависимости от скорости движения устройством
ограничения токов УОТ. Последний реализует функции программ¬
ного ограничителя тормозной силы и токов т.э.д. Таким образом,

на выходе регулятора скорости формируется сигнал g3= — Aj —

А3 заданной тормозной силы В3, программно ограничиваемый по
току якорей т.э.д. в функции скорости движения /оя(т).

Если скорость движения в режиме ФС становится ниже задан¬
ной в результате движения поезда по элементу пути с малым укло¬
ном, сигнал рассогласования существенно возрастает Aj»0. Регу¬
лятор скорости PC снижает сигнал g3 заданной тормозной силы до
минимального значения, переводя систему в режим подтормажи-
вания с тормозной силой 100 кН. Такой же режим подтормажива-

ния реализуется при постановке тормозной рукоятки КМ в поло¬
жение ПТ.

Регулятор скорости дополнительно обеспечивает защиту колес¬
но-моторных блоков от режима синхронного юза. В случае возник¬
новения юза, сопровождающегося резким снижением уровня сиг¬
нала z3 скорости движения v, устройство сравнения УС1 формирует
сигнал рассогласования Aj» 0 независимо от режима торможения
(остановочного или фиксации скорости). Сигнал Aj производит сни¬
жение сигнала g3 заданной тормозной силы Ву приводящее к лик¬
видации юза.

Основной контур регулирования тормозной силы образуют: ус¬
тройство вычисления тормозной силы УВТ, устройство сравнения
УСЗ и регулятор тормозной силы РТ. УВТ производит вычисление
сигнала z4 фактической тормозной силы 2?т путем перемножения
сигнала z2 с выхода измерительного устройства ИУ2, измеряюще¬
го токи якорей / и сигнала Zj от ИУ1, функционально преобразо¬
ванного в сигнал, пропорциональный магнитному потоку т.э.д.

Устройство сравнения УСЗ сравнивает сигнал g3 заданной тор¬
мозной силы В3 с сигналом z4 фактической тормозной Вт, создавая
сигнал рассогласования по тормозной силе А2 = g3 — z4. Последний
передается в регулятор тормозной силы РТ, формирующий сигнал
управления wv. Этот сигнал передается в управляющее устройство

У
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УУ, которое выполняет функции фазорегулятора, преобразуя сиг¬
нал «у, изменяющийся по уровню в импульс фазового управления
выпрямителем возбуждения ВУВ, сдвинутый на фазовый угол а
по отношению к напряжению тяговой обмотки трансформатора.

На входе управляющего устройства УУ сигнал му суммируется в
сумматре СМ с сигналами А3 и Д4 превышения ограничений токов
обмоток якорей Д/оя и возбуждения Д/ов тяговых электродвигателей,
программно задаваемых УОТ. Сумматор СМ, устройство ограниче¬
ния токов УОТ и управляющее устройство УУ образуют внутренний
подчиненный контур регулирования токов возбуждения и якорей
т.э.д. При наличии сигналов Д3 или Д4 ограничений токов, фазовые
углы ав импульсов управления на выходе управляющего устройства
УУ возрастают, уменьшая ток возбуждения и токи якорей т.э.д.

В диапазоне изменения скорости 90—110 км/ч величина токов
якорей ограничивается потенциальными условиями на коллекторах
тяговых электродвигателей. При этом УОТ задает программу огра¬
ничения тока якорей в функции скорости /оя(у). Сопротивление тор¬
мозных резисторов в этом режиме постоянно, поэтому ограничения
токов обмоток возбуждения не требуется.

В диапазоне изменения скорости 60—90 км/ч действует огра¬
ничение по мощности тормозных резисторов. Для его реализации
УОТ задает ограничение тока I на уровне 830 А. При скорости
ниже 60 км/ч действует ограничение по току возбуждения /ов =1100 А.
Эта величина тока допускается по условиям нагревания обмоток
возбуждения тягового электродвигателя в течение 20 мин, что дос¬
таточно для режима остановочного торможения поезда.

В системе автоматического управления предусмотрен ряд эле¬
ментов, реализующих дополнительные функции. В частности, при
снижении скорости до 35 км/час производится переключение сту¬
пени тормозных резисторов для уменьшения сопротивления от
1 до 0,54 Ом при обеспечении режима стабилизации тормозной
силы. В случае отказа реостатного тормоза, т.е. при /я= 0, произво¬
дится автоматическое включение замещающего пневматического
торможения.

САУрекуперативным торможением электровозов постоянного
тока. Электровозы постоянного тока серии ВЛ1 Iм, управляемые
по системе многих единиц, и электровозы серии ВЛ10у оборудова¬
ны системой автоматического управления рекуперативным тормо¬
жением. Ранее установленные на электровозах блоки автомати-

в
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ческого управления САУРТ-034 заменены на разработанные в
МИИТе блоки САУРТ-034БЭ, оснащенные усовершенствованной

противоюзовой защитой.
САУ обеспечивает автоматическое управление режимами:

— плавного входа в рекуперацию и предварительного торможе¬
ния с тормозной силой 100 кН;

— рекуперативного торможения с плавным нарастанием до задан¬
ной величины и стабилизацией тормозной силы;

— рекуперативного торможения со стабилизацией заданной ско¬
рости движения на спусках и ограничением тормозной силы;

— замещающего пневматического торможения при отказе реку¬
перативного торможения.

Машинист управляет процессом торможения так же, как и на
электровозе ВЛ80С (см. рис. 2.20), посредством тормозной руко¬
ятки ТР, задатчика тормозной силы ЗТС и задатчика напряжения
ЗН пульта управления машиниста ПУМ (рис. 2.21). Тормозная ру¬
коятка имеет следующие фиксированные положения: 0 — нуле¬
вое; П — подготовка схемы силовых цепей к торможению; ПТ —

предварительное торможение с плавным входом в режим рекупе¬
рации; Т — торможение с шестнадцатью ступенями тормозной
силы или скорости торможения.

Ступени тормозной силы задаются задатчиком тормозной силы
ЗТС в диапазоне от 100 до 490 кН.

Кроме того, на пульте управления машиниста имеется переклю¬
чатель режимов со следующими обозначениями: «/ — ток» — режим
стабилизации тормозной силы и «V — скорость» — режим стаби¬
лизации скорости торможения. В тормозных положениях пере¬
ключатель режимов формирует сигнал gx заданной тормозной
силы В3 или скорости движения v3.

Тяговые электродвигатели включены по схеме независимого воз¬
буждения. Якорные обмотки т.э.д. каждой секции электровоза
включены в последовательно-параллельные или последовательные
группы. Обмотки возбуждения тяговых электродвигателей каждой
секции независимо от группировки якорных обмоток включены в
две последовательно-параллельные группы и питаются мотор-ге¬
нератором возбуждения. Контур возбуждения т.э.д. с выходным сиг¬
налом /в — током возбуждения можно рассматривать как объект
управления ОУ1, а контуры якорных обмоток тяговых электродви-
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гателей с выходным сигналом /я — током якорей, замыкающиеся
на потребителя рекуперируемой электроэнергии через контактную
сеть, как ОУ2. Электровоз и поезд с выходным сигналом v — ско¬
ростью движения образуют ОУЗ.

В системе автоматического управления использованы сигналы
обратных связей: Zj — по току возбуждения /в от измерительного
устройства ИУ1, z2 — по току якорных обмоток /я от ИУ2, z3 — по
суммарной э.д.с. тяговых электродвигателей ик от ИУЗ, z4 — по ско¬
рости движения v от устройства вычисления скорости УВС.

Система автоматического управления содержит пять однотип¬

ных регуляторов: скорости PC, напряжения PH, тока рекуперации
РТР, тока возбуждения РТВ, отношения токов якорей и возбужде¬

ния тяговых электродвигателей РОТ. На входы регуляторов одно¬
временно с задающими сигналами и сигналами обратных связей,
непрерывными по уровню, подается периодический сигнал пило¬
образной формы частотой 30 Гц от релаксационного генератора.
Поэтому каждый регулятор выполняет функции устройства срав¬
нения или сумматора сигналов и преобразователя, сигналов, не¬
прерывных по уровню, в периодическую последовательность им¬
пульсных сигналов с относительной длительностью X.

Четыре регулятора PH, РТР, РОТ и РТВ подключены посред¬
ством диодно-логического модуля ИЛИ-min к управляющему уст¬
ройству УУ. Диодно-логический модуль обеспечивает выбор кон¬
тура регулирования с минимальным регулирующим воздействием.

Пятый регулятор PC образует внешний контур регулирования,
функционирующий в режиме стабилизации скорости движения.
Управляющее устройство УУ производит импульсное переключение
силового транзисторного ключа, регулирующего ток возбуждения /н
генератора возбуждения ОУ1. Относительная длительность X состо¬
яния насыщения транзисторного ключа УУ формируется регулято¬
рами через модуль ИЛИ-min.

Регулятор напряжения PH обеспечивает плавный вход в режим
рекуперации при постановке тормозной рукоятки в положение ПТ.
На входы регулятора подаются сигналы: g4 — задатчика напряжения
ЗН, z3 — суммарной э.д.с. вращения ик тяговых электродвигателей

от ИУЗ, zl — тока возбуждения /в от ИУ1. Задатчик напряжения ЗН
осуществляет плавное нарастание сигналаядо максимального уров¬
ня в течение 3 секунд. Регулятор PH обеспечивает плавное увеличе-
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ние тока возбуждения до тех пор, пока суммарная э.д.с. вращения ик
не достигнет уровня напряжения контактной сети UKC. При неба¬
лансе напряжений UKC — ик = 80- 100 В срабатывает реле рекупера¬
ции (на рис. 2.21 не показано) и производит включение линейных
контакторов, замыкающих цепь тока рекуперации.

В том случае, если произошла задержка срабатывания реле ре¬
куперации или линейных контакторов, сигнал z3 посредством регу¬
ляторов PH и РТВ производит ограничение тока возбуждения тя¬
говых электродвигателей и удержание положительного небаланса
напряжений ик — UKC = 50—80 В, пока не сработает реле рекупера¬
ции и произойдет включение линейных контакторов.

Основной контур регулирования тока рекуперации образуют: ус¬
тройство ограничения тока УОТ, устройство защиты от юза УЗЮ и
регулятор тока рекуперации РТР. На входы РТР подаются сигналы:

#3 — от регулятора скорости, g2 — заданного тока рекуперации /яз
от функционального преобразователя ФП, z2— обратной связи по
току рекуперации /я от ИУ2 через устройство ограничения тока УОТ.

Сигнал g2 заданного тока рекуперации / формируется функ¬
циональным преобразователем ФП по сигналуgj задатчика тормоз¬
ной силы ЗТС и сигналу обратной связи Zj тока возбуждения i}
говых электродвигателей от ИУ1. При достижении током возбуж¬
дения величины, близкой к максимальной, сигнал g2 заданного
тормозного тока /яз ограничивается функциональным преобразо¬
вателем ФП, предотвращая возникновение юза колесных пар элек¬
тровоза.

Устройство ограничения тока рекуперации УОТ при отсутствии
юза передает на вход регулятора РТР сигнал z2 обратной связи по
току /я якорей т.э.д. от измерительного устройства ИУ2. При воз¬
никновении юза одной из колесных пар элемент УЗЮ по сигналу
регулятора тока возбуждения РТВ или блока противо-юзо-боксо-

вочной защиты ПБЗ воздействует на УОТ, увеличивая уровень сиг¬
нала z2, тем самым уменьшая величину тока возбуждения / тяго¬
вых электродвигателей и тока рекуперации /я. Дополнительно
УЗЮ формирует при продолжительном юзе (более 5 с) сигнал на
подачу песка.

Регулятор тока возбуждения РТВ ограничивает интенсивность
нарастания тока возбуждения, формирует сигнал, воздействующий
на УЗЮ при возникновении юза, а также ограничивает максималь-

тя-
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ную величину токов возбуждения тяговых электродвигателей. На
входы РТВ подаются сигналы Zj обратной связи по току возбужде¬

ния /в непосредственно от ИУ1 и через инерционное звено ИЗ. Кро¬
ме того, на вход РТВ подается через интегро-дифференцирующее
звено ИДЗ сигнал z3 обратной связи по суммарной э.д.с. вращения

ик тяговых электродвигателей от ИУЗ, обеспечивая смягчение пере¬
ходных процессов в цепях якорей т.э.д. при скачках напряжения в
контактной сети.

В установившемся режиме рекуперации сигнал Z] обратной свя¬
зи по току возбуждения и сигнал на выходе инерционного звена ИЗ
равны, т.е. небаланс этих сигналов равен нулю. При возникновении
юза, когда сигнал Zj интенсивно возрастает, а сигнал на выходе ИЗ
изменяется с запаздыванием, создается небаланс входных сигналов
РТР, ограничивающий интенсивность возрастания тока возбужде¬
ния т.э.д. Выходной сигнал РТВ при этом переключает УЗЮ в ре¬
жим ограничения тока рекуперации.

В том случае, когда отключается потребитель рекуперируемой
энергии, возрастает суммарная э.д.с. вращения тяговых электро¬
двигателей ик. Сигнал обратной связи z3 от ИУЗ, подаваемый в ре¬
гуляторы РТВ и PH, обеспечивает снижение тока возбуждения /
т.э.д. и ограничение их суммарной э.д.с. вращения.

Регулятор отношения токов РОТ производит ограничение тока
возбуждения /в и тока рекуперации /я, если отношение токов якорей
и возбуждения превышает допустимую по условиям коммутации ве¬
личину (2,8 — при параллельном соединении; 5,3 — при последова¬
тельно-параллельном соединении т.э.д.).

В режиме стабилизации скорости движения (режим «V — ско¬
рость») внешний контур регулирования образует устройство вычис¬
ления скорости УВС и регулятор скорости PC. На вход регулятора
PC подаются сигналы: g — от задатчика ЗТС, переключенного в
режим стабилизации скорости, и z4 — обратной связи по скорости
v от УВС.

УВС производит вычисление сигнала z4, пропорционального
скорости движения v по сигналам Zj, z2 и z3 чувствительных эле¬
ментов ИУ1, ИУ2 и ИУЗ, измеряющих токи обмоток возбуждения

/в, якорей /я, а также суммарную э.д.с. вращения тяговых электро¬
двигателей ик. Выходной сигнал g3 регулятора PC является сигна¬
лом заданного тока рекуперации /яз, подаваемым на вход РТР.

в
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Таким образом, система автоматического управления функцио¬
нирует как двухконтурная с главным контуром регулирования ско¬
рости движения и соподчиненными параллельными контурами ре¬
гулирования токов возбуждения и токов якорей тяговых электро¬
двигателей.

САУрекуперативно-реостатным торможением электропоездов.
Системами автоматического управления режимами пуска и элект¬
рического рекуперативно-реостатного торможения оборудованы
электропоезда постоянного тока ЭР2Т, ЭТ2, ЭД4, ЭД4Э. В отли¬
чие от этого, на электропоездах однофазно-постоянного тока ЭР9Т,
ЭД9Т используется только электрическое реостатное торможение.

САУ электропоездов постоянного тока обеспечивают автомати¬
ческое управление режимами:

— пуска с поддержанием заданного пускового тока при последо¬
вательном возбуждении тяговых электродвигателей;

— рекуперативного торможения со стабилизацией заданного тока
рекуперации при независимом возбуждении тяговых электродвига¬
телей;

— реостатного замещающего торможения со стабилизацией тор¬
мозного тока при независимом возбуждении тяговых электродвига¬
телей;

— реостатного дотормаживания с поддержанием заданного тор¬
мозного тока при последовательном или независимом возбуждении
тяговых электродвигателей;

— замещающего электропневматического торможения при отка¬
зе электрического торможения.

САУ электропоездов переменного тока выполняют такие же фун¬
кции за исключением режима рекуперативного торможения.

В режимах пуска САУ обеспечивает поддержание среднего зна¬
чения пусковоготока /я (рис. 2.22) тяговых электродвигателей — объек¬
та управления ОУ1 путем ступенчатого регулирования напряжения

ик, подводимого к т.э.д. и ступенчатого «ослабления возбуждения» (3
с помощью контакторных пуско-регулирующих аппаратов исполни¬
тельного устройства ИсУ1. Моторные вагоны, сцепленные с голов¬
ными и прицепными вагонами, образуют объект управления ОУ2 —
электропоезд с выходной переменной v — скоростью движения.
Интенсивность пуска — значение пускового тока g\ задается от кон¬
троллера машиниста КМ с помощью задатчика тока ЗТ. Контур ре¬
гулирования тока /я т.э.д. образуют устройство сравнения УС1, уп-
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равляющее устройство УУ1, исполнительное устройство ИсУ1,
объект управления ОУ1 и измерительное устройство ИУ1, измеряю¬
щее ток тяговых электродвигателей /я.

УУ1 формирует команды на переключение ступеней управле¬
ния ИсУ1 при снижении сигнала обратной связи z
го на вход УС1 ниже уровня задающего сигнала timin’ те- ПРИ

Al=£lmin-Zl >0-
Изменение загрузки вагонов, скорости движения электропоез¬

да, климатических условий влияют на условия сцепления колес¬
ных пар с рельсами и повышают вероятность возникновения ре¬
жимов боксования и юза. Для предупреждения возникновения ава¬
рийных режимов, обусловленных ухудшением условий сцепления,
САУ электропоездов целесообразно оборудовать устройствами
адаптации по условиям сцепления. Адаптер А на основе заложен¬
ных в память зависимостей формирует выходной сигнал q* допус¬

тимого по условиям сцепления тока тяговых электродвигателей по
сигналам обратных связей z5, z6, z7 от измерительных устройств
ИУ5, ИУ6 и ИУ7, измеряющих скорость движения у, влажность
окружающей среды (Вл), массу вагонов ти. В настоящее время на
эксплуатируемых электропоездах применяется только адаптация по
загрузке вагонов.

Промежуточное устройство ПУ, выполняющее операцию ИЛИ-
min, пропускает на выход минимальный сигнал glmin из трех сиг-

— задан-

подаваемо-1»

**налов: g j —заданного значения тока тягового режима, q{
ного значения тока режима торможения и q* — адаптера. Сигнал

min является задающим для контура управления тока т.э.д.
В режимах электрического рекуперативного и замещающего

реостатного торможения величина тормозного тока g2 задается
рукояткой задатчика режима ЗР контроллера машиниста. Контур
управления тока якорей тяговых электродвигателей образуют сле¬
дующие устройства: УС2, УУ2, ИсУ2, ОУ1 и ИУ1. При этом УС2
преобразует выходные сигналы g4 от блока программных ограни¬
чений и переключений БПОП, Zj от ИУ1 в сигнал рассогласова¬
ния Д2= g4 - Zj. УУ2 по этому сигналу формирует импульсы уп¬
равления тиристорным мостом возбуждения тяговых электродви¬
гателей (исполнительное устройство ИсУ2), сдвинутые на
фазовый угол ав по отношению к напряжению питания тиристор¬
ного моста. Напряжение независимого возбуждения иъ с выхода
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ИУ2 поступает на обмотки возбуждения ОУЗ, создавая ток воз¬
буждения / .

Кроме того, БПОП выполняет следующие дополнительные фун¬
кции:

— контроль и ограничение тока возбуждения /в по сигналу z2 из¬
мерительного устройства ИУ2;

— контроль уровня напряжения контактной сети икс по сигналу

z3 измерительного устройства ИУЗ;
— формирование сигнала g4, задающего величину тормозного тока

в режимах электрического рекуперативно-реостатного торможения,
функционально зависящую от сигнала z4 измерительного устройства
ИУ4, который измеряет скорость движения v;

— формирование сигнала
тока в режиме электрического реостатногодотормаживания при пос¬
ледовательном возбуждении т.э.д.;

— формирование разрешающего сигнала g5 на переключение по¬
зиций пуско-тормозных аппаратов в режимах реостатного торможе¬
ния электропоездов ЭР9Т, ЭД9Т и реостатного дотормаживания
электропоездов ЭТ2 и ЭД4;

— формирование команд на переключение САУ в режимы реос¬
татного замещающего торможения и реостатного дотормаживания;

— формирование команды на включение электропневматическо-
го замещающего торможения при отказе электрического торможе¬
ния, т.е. при /я = 0.

Таким образом, в режиме тяги и электрического рекуперативно¬
реостатного торможения САУ функционирует с независимыми кон¬
турами регулирования пускового и тормозного токов тяговых элект¬
родвигателей.

задающего величину тормозного



Глава 3. МОДЕЛИ НЕПРЕРЫВНЫХ ЛИНЕЙНЫХ

СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

ЗЛ. Понятие о модели САУ.
Классификация САУ по виду моделей

Модель (от латинского modulus — мера, образец, норма) в технике
определяется как физическое устройство или математическое опи¬
сание каких-либо объектов, систем, процессов, явлений, отражаю¬
щее их существенные свойства. В соответствии с этим используют
физические и математические модели.

Физические модели представляют собой устройства, схемы, уста¬
новки, системы машин, и т.д., подобные в определенном смысле
изучаемым объектам [6]. Преобразование объекта в физическую мо¬
дель реализуется путем масштабирования его параметров и разме¬
ров на основе теории подобия и размерности. Для адекватности про¬
цессов функционирования модели реальным процессам изменение
различных размеров и параметров в одной модели может осуществ¬
ляться с различным масштабом. Такие модели, в отличие от морфо¬
логических, уже позволяют исследовать функционирование изучае¬
мых явлений и систем. Однако создание физической модели пред¬
ставляет собой довольно сложную проблему. Кроме того, для изучения
влияния изменения параметров отдельных элементов модели необ¬
ходимо их изготовить, что значительно удорожает и усложняет вы¬
полнение исследований.

Математические модели являются математическим описани¬
ем процессов функционирования изучаемых явлений или объек¬
тов на основе известных физических законов [6]. К таким зако¬
нам относятся законы Ньютона, принцип Даламбера и уравнения
Лагранжа в механике; законы Ома, Кирхгофа, Фарадея, Максвелла
в электромеханике и т.п. Математические модели позволяют лег¬
ко выполнять формализацию задачи и широко применять методы
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математического моделирования для исследования функциони¬
рования (анализа) изучаемых явлений или объектов и даже для
решения задач синтеза.

Выбор соответствующей модели, отражающей интересующие
исследователя свойства физической системы, зачастую является до¬
статочно сложной задачей. Использование упрощенного матема¬
тического описания может привести к ошибочным выводам. Вме¬
сте с тем нерациональное усложнение модели может не позволить
получить обозримые результаты. Поэтому выбор модели требует от
ее создателя глубокого знания физических процессов, протекаю¬
щих в изучаемой системе, изучение опыта использования различ¬
ных моделей при исследовании подобных систем. Математическая
модель должна соответствовать решаемой задаче. Так, математи¬
ческое описание движения поезда по участку может не учитывать
процессов в тяговом приводе. Вместе с тем при создании электрон¬
ных преобразователей для тягового привода необходимо выполнять
достаточно точное описание электромагнитных процессов.

Основой анализа системы управления служит рассмотрение за¬
висимости между определенными входами и выходами ее устройств

(блоков, узлов и т.д.). Введем основные понятия на примере обоб¬
щенного объекта управления (рис. 3.1), содержащего исполнитель¬
ное и измерительное устройства, а также объект управления.

При моделировании системы управления в целом или ее отдель¬
ных функциональных узлов рассматриваемые понятия не изменя¬
ются. Система автоматического управления содержит объект управ¬

ления и совокупность устройств,
обеспечивающих заданное соот¬
ветствие между входом (входами)

и выходом (выходами) системы.
Тогда связь между входом (входа¬
ми) и выходом (выходами) систе¬
мы может быть охарактеризована
подобно тому, как это можно сде¬
лать для обобщенного объекта уп¬
равления.

Управляющие воздействия в
модели объекта представлены дей¬
ствительными функциями време-

Q\(0 ?2(') як(О

*i(0
x2(t)

у,(0
у2(0

хп(*)

т т w
Рис. 3.1. Объект управления
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ни jqCO, x2{t), •••> *л(0> выходные сигналы (иначе управляемые ве¬
личины) — функциями yÿ(t), y2(t), •••, ym(0; контролируемые вне¬
шние воздействия — функциями q\(t), q2{t), ..., qÿt); неконтроли¬
руемые внешние воздействия — функциямиf\{t),f2{t), ...,/ДО- Для
сокращения записи совокупность функций представляется в век¬
торной форме:

\={хухг,..„хп\,

\={ууу2,...,ут)\
Q = (9p ?2>
F ={fvf2, -,/,)я

Здесь для сокращения опущена запись независимой переменной t.
Математическая модель обобщенного объекта представляет собой
математическое описание, связывающее управляемые величины Y
со всеми внешними воздействиями X, Q, F. Если модель представ¬
лена системой уравнений и известно исходное состояние системы
(т.е. известны начальные условия), то результатом решения этой сис¬
темы уравнений при заданных внешних воздействиях X, Q, F будут
управляемые величины Y.

Если п = т= 1, т.е. имеется одно управляющее воздействие и на
выходе — одна управляемая величина, то объект является односвяз¬
ным. В противном случае, когда имеется несколько взаимно свя¬
занных координат векторов X и Y, объект называют многосвязным.

Рассмотрим модели односвязных систем. Предположим, что на
систему воздействует входной сигнал X(t), Q = О, F = 0 и до пода¬
чи входного сигнала система находилась в нулевых начальных ус¬
ловиях. Соотношение между входом и выходом обозначим как y{t) =
= L[x(t)], где L — оператор, определяющий связь между функци¬

ями y(t) и х(/). Оператор может быть функцией у, х, t, может вклю¬
чать операции интегрирования, дифференцирования, может за¬
даваться в вероятностной форме.

Систему называют детерминированной, если каждому входному
сигналу x(t) соответствует единственный выходной сигнал y(t). В не¬
детерминированных (иначе стохастических) системах данному вход-
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ному сигналу могут соответствовать несколько возможных выход¬
ных сигналов, каждый из которых имеет определенную вероят¬
ность появления. Входной сигнал в детерминированной системе
может быть как детерминированной, так и случайной функцией
времени. В последнем случае выходной сигнал — также случай¬

ная функция времени.
Систему называют реализуемой, если текущее значение ее вы¬

ходного сигнала у(0 не зависит от будущих значений входного сиг¬
нала х(/) и где y(t) — действительная функция времени при всех дей¬

ствительных функциях x(t). Эти условия соответствуют наличию
причинно-следственных связей в системе: у(ф) полностью опреде¬
ляется свойствами системы и значениями x(t) при t < tQ.

Систему называют линейной, если ее модель описывается линей¬
ным оператором L. Оператор L является линейным, если выполня¬
ются следующие условия:

L( 2) =1(дс,) +

L(Cx) = CL(х),

X. +х
1

где х, Xj, х2 — функции;
С — постоянная величина.

Указанные условия определяют принцип суперпозиции: реакция
линейной системы на сумму входных сигналов равна сумме реакций

системы на каждый из этих входных сигналов. В противном случае
систему называют нелинейной.

Систему называют стационарной (автономной) при выполнении
следующего условия: если входной сигнал x(t) вызывает реакцию
y(t), то x(t — т) соответствует реакции y(t — т), т.е. если у(0 = L[x{t)\,
то y(t- т) = L[x(t- т)].

Приведенное условие означает, что в стационарной системе реак¬
ция системы не зависит от момента приложения входного сигнала.

Приведенные определения поясним на ряде примеров.

Пример 3.1
Дифференциатор характеризуется соотношением

dx(t)
'М-

*
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Приведенный оператор — линейный, так как

d[*2 W + x2 (0]_ dx\ (r)
| dx2 (0.

dt dt

d[cx(tj\ cdx(i)

dt

dt dt

Приведенный оператор стационарный, так как

dx(t-т)
dt ’

y(t-x)=

отсюда дифференциатор — линейная стационарная система.

Пример 3.2
Квадратор характеризуется соотношением

й')=*2М-

Приведенный оператор — нелинейный, так как

[xl(t)+ x2(t)]2*xi(t)+ x22(t)-

Приведенный оператор стационарен, так как

у(?-т) =*2(/-т),

отсюда квадратор — нелинейная стационарная система.

Пример 3.3
Система характеризуется соотношением

dx(t)
dt

Приведенный оператор — линейный, так как

/hWW')] А(0 . AW.t-— t--Г t-,
dt

,</[«(;)] dx(t)
dt ’dt

dt dt
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Приведенный оператор нестационарный, так как

dx{t-x)
dt ’

отсюда данная система линейна и нестационарна.

В общем случае модель односвязной непрерывной САУ представ¬
ляется нелинейным уравнением вида

F(x,x,x\ ...,q,q,q, = О,

куда входят: функция х, описывающая процессы на входе системы и
ее производные х', х", ...; функция у, описывающая процессы на вы¬
ходе системы и ее производные у', у", ...; функции q и/, описываю¬
щие, соответственно, контролируемые и неконтролируемые внешние
воздействия (возмущения) и их производные q', q", аргу¬
мент t — время.

На основе уравнения (3.1) выполняют решение задач анализа и
синтеза систем автоматического управления.

Задачей анализа САУ является определение функции y(t) при за¬
данных x(t), q{t),f{t), т.е. нахождение математического описания
процесса на выходе системы при заданных входных сигналах. По¬
лученная функция y(f) анализируется с точки зрения соответствия
требованиям устойчивости и выбранным критериям качества уп¬
равления.

Задача синтеза САУ значительно сложнее. При ее решении тре¬
буется при известной модели объекта управления, заданных вход¬
ном сигнале х, внешних воздействиях q, /определить модель уп¬
равляющего устройства (иначе, закон управления) таким образом,

чтобы зависимость у(/) удовлетворяла требованиям устойчивости
и критериям качества управления. Формулировка задач анализа и
синтеза не изменяется и для других моделей САУ.

Систему управления можно характеризовать по виду циркули¬
рующих в ней сигналов. Сигнал называют непрерывным, если он
описывается однозначной функцией непрерывно изменяющегося
аргумента t, определенной для всех значений t на заданном интер¬
вале за исключением, возможно, счетного множества точек. Опре¬
деление непрерывного сигнала не совпадает с определением непре¬
рывной функции. Непрерывный сигнал может быть описан и фун¬
кцией, имеющей точки разрыва (рис. 3.2).

dx(t-т)
фй-т)

dt к }

(3.1)
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В частности, к непрерывным сигналам
относится так называемый «единичный ска¬
чок» (рис. 3.3) — функция, задаваемая сле¬
дующим соотношением:

X

*0 t

1«-{0, при t < 0;

1, при/>0.
Рис. 3.2. Непрерывный

сигнал

Эта функция обычно моделирует воздей¬
ствие, подаваемое на вход системы.

Дискретным называют сигнал, определен¬
ный только для последовательности дискрет¬
ных значений независимой переменной t.
Преобразование непрерывного сигнала в
дискретный называют временной дискрети¬
зацией.

Временная дискретизация реализуется в
системах, использующих импульсную моду¬
ляцию — преобразование непрерывного модулируемого сигнала в
последовательность импульсов, параметры которых (амплитуда, дли¬
тельность, частота) несут информацию о модулированном сигнале.
Различают системы с амплитудно-импульсной (АИМ), широтно-им¬
пульсной (ШИМ) и частотно-импульсной (ЧИМ) модуляцией.

В системахс импульсными видами модуляции АИ М, ШИ М, Ч ИМ
сигнал на выходе модулятора так же, как и непрерывный сигнал,
может принимать бесконечное множество значений. Сигналы, при¬
нимающие бесконечное множество значений, называют аналоговы-

1(0

0
t

Рис. 3.3. График функ¬
ции единичного скачка

ми.
Развитие вычислительной техники привело к широкому исполь¬

зованию цифровых систем управления. В цифровых системах ана¬
логовый сигнал преобразуется в цифровую форму. Техническое
устройство, осуществляющее эту функцию, называют аналого-циф¬
ровым преобразователем (АЦП). На вход АЦП поступает аналого¬
вый сигнал, имеющий бесконечное множество значений, на выхо¬
де АЦП будет сигнал, определяющий двоичный код фиксирован¬
ной разрядности п. Следовательно, число различных состояний на
выходе «-разрядного АЦП конечно и равно 2п.
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Преобразование аналогового сигнала, имеющего бесконечное
множество значений, в сигнал с конечным множеством значений
называют квантованием по уровню (или просто квантованием). Опе¬
рация квантования связана с округлением непрерывной величины.
Модель идеального квантования (рис. 3.4, а) представляют в виде
нелинейного элемента (НЭ), для которого зависимость выходной
величины хвых от входной хвх имеет вид, приведенный на рис. 3.4.
Погрешность квантования А = х

Если нелинейный элемент округляет аналоговый сигнал хвх в со¬
ответствии с характеристиками, приведенными на рис. 3.4, б и в, то
максимальная погрешность квантования равна q — шагу квантова¬
ния по уровню. В том случае, когда округление реализуется нели¬
нейным элементом, имеющим характеристику, симметричную от¬
носительно оси ординат (рис. 3.4, г), максимальное значение погреш-

„ q
ности определяется величиной .

— хвх-вы\

б Ьа
зq

2Я
Я. : К

НЭ -Hg)-V*вх 1 I I I I I

—3q —2q q 2q 3q *BX

t -ЯУ -—2я
3Я

в гЬ I

Ъя Ъя
2Я 2Я

ЯЯ
1 1J_L 1111

-3q -2q _g_q2q 3яхт
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Рис. 3.4. Модель квантующего устройства (а) и характеристики идеального
квантующего устройства (б, виг)
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Эту характеристику можно принять за базовую, так как она умень¬
шает вдвое максимальную методическую погрешность и может быть
получена из первых двух путем подачи на вход НЭ постоянного сме-

п
щения, равного соответственно ±- .

Погрешность квантования по уровню для базовой характеристи¬
ки НЭ функционально связана с входной величиной в соответствии
с рис. 3.4, г следующим образом:

А = kq — хвх при kq — 0,5q < xBX <kq + 0,5q,

где к — номер интервала квантования.

Рассмотренные характеристики НЭ имеют постоянный шаг кван¬
тования по уровню, хотя в общем случае это и необязательно.

В цифровых системах управления непрерывный сигнал под¬
вергается временной дискретизации и квантованию по уровню.
В соответствие с рис. 3.4 операция квантования нелинейна. В то
же время процесс временной дискретизации может быть описан ли¬
нейным оператором. Поэтому в данной книге термин «квантова¬
ние по времени», иногда применяемый в технический литературе,
не используется, а вместо него применяется термин «временная
дискретизация».

Входной сигнал объекта управления, как правило, является ана¬
логовым. Поэтому дискретизированный по времени и квантован¬
ный по уровню сигнал на выходе цифрового устройства управле¬
ния должен быть преобразован в аналоговый. Это преобразование
называют восстановлением. Операция восстановления реализует¬
ся цифро-аналоговым преобразователем (ЦАП).

Таким образом, в зависимости от вида сигнала системы автома¬
тического управления могут быть непрерывными, импульсными и циф¬
ровыми.

В состав системы управления входят, как правило, инерционные
элементы. Математические модели, описывающие процессы в этих
элементах, базируются на законах физики. Поэтому модель САУ
содержит в общем случае систему интегро-дифференциальных и ал¬
гебраических уравнений. Так, при моделировании электрических
цепей, динамики локомотива и т.п. используют обыкновенные диф¬
ференциальные уравнения, а при моделировании процессов в сис¬
темах с распределенными параметрами (например, распространение
волны воздуха в тормозной системе поезда; переходные процессы в
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длинных линиях) используются дифференциальные уравнения в
частных производных. Моделирование процессов в цифровых уп¬
равляющих устройствах систем может быть осуществлено на базе так
называемых разностных уравнений. В данной книге будут рассмат¬
риваться модели на основе обыкновенных дифференциальных и раз¬
ностных уравнений.

3.2. Модели «вход—выход» односвязных непрерывных
линейных стационарных САУ (модели классической теории

управления) и способы их исследования

Наиболее разработана теория линейных стационарных непрерыв¬
ных САУ [26]. В дальнейшем изложении термин «непрерывные» бу¬

дем опускать, термин «стационарный» использовать только там, где
это принципиально необходимо. Математическую модель «вход—
выход» линейной стационарной односвязной системы можно полу¬
чить из уравнения (3.1) на основе принципа суперпозиции в виде
линейного дифференциального уравнения с постоянными коэффи¬
циентами:

t-ÿ I jA I jJ Г /
/=0 dt 1=о at

(3.2)
*Л*’dt/•=() к=о

п> т> s, И, считая, что при / = 0, / =0, г = 0 и к = 0 производная нулевого
порядка представляет собой соответствующую координату.

В значительном числе практически важных случаев анализ ли¬
нейных САУ проводят вначале при отсутствии возмущений q и /, а
затем дополнительно рассматривают влияние возмущений. Кроме
того, так как функции q,f и их производные входят в правую часть
уравнения, то

/ С/ Fid x+—q +—f
В

4 в/п А т

Е4тт= Е*, / /
(3.3)

dt1dti=О 1=0
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или

/п А т

24ÿf=S *,
i=0 at 1=0

d и
(3.4)dtr

где

и = х +
В В

I I

Без нарушения общности можно рассматривать модель

/п А т

t ‘ dt't 'dt'
где и — входной сигнал, называемый также «управлением».

Если принять, что начальные условия у(0), /(0), у(Л_1)(0) рав¬
ны 0, что соответствует отсутствию запасов энергии при t = 0, то,
используя преобразование Лапласа для левой и правой части урав¬
нения (3.5), получаем:

d‘u
, п>т, (3.5)

п т

YjaiPly(p)=HbiPlU{P)’ (3.6)
/=0 /=0

где у{р) = L[y(t)\ — изображение по Лапласу функции у(/);
и(р) = L\u{t)\ — изображение по Лапласу функции u(t).

Переход от оригиналов y{t) и u(t) к изображениям у(р) и и(р) осу¬
ществляется в соответствии с выражениями:

у(р)= \у(?)е Ptdt\
о

и(р)= Ju(t)e~ptdt,
о

(3.7)

(3.8)

где р = а + jb — комплексное число — оператор Лапласа.

В Приложении 1 кратко описано преобразование Лапласа, сфор¬
мулированы его свойства и приведена таблица соответствия ориги¬
налов и изображений.
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Вынося у(р) и и(р) за знак суммирования в левой и правой части
(3.6), получаем:

т

y{p)HaiPl =u{p)HbiP1’ (3.9)
/=0 /=0

откуда

т

2>/у(р) М{р)
= 1=0

и(р) "
w(p) (3.10)N(py

1=0

где М(р) и N(p) — полиномы соответственно т-й (т < п) и п-й степени.

Функцию W(p) — отношение изображения у(р) выходной фун¬
кции к изображению и{р) входной при нулевых начальных усло¬

виях называют передаточной функцией.
Рассмотрим решение задачи определения реакции линейной си¬

стемы, заданной математической моделью (3.5), в начале функци¬
онирования которой не была запасена энергия, на входной сигнал
u(t). Реакция линейной системы на заданный входной сигнал u(t)
определяется функцией y(t), которая является решением диффе¬
ренциального уравнения (3.5) при нулевых начальных условиях.
Рассмотрим решение уравнения операторным методом (метод, ис¬
пользующий преобразования Лапласа).

Передаточная функция W{p) системы (3.5) определяется выра¬
жением (3.10). Изображение входного сигнала и{р) определим, вос¬
пользовавшись преобразованием Лапласа (3.8). Тогда при нулевых
начальных условиях изображение выходного сигнала у{р), в соот¬
ветствии с (3.10), имеет вид:

М(р)
y{p) = W{p)u(p) и{р). (3.11)

N(p)

Оригинал y{t) — реакцию системы на входной сигнал — найдем,
воспользовавшись обратным преобразованием Лапласа (см. Прило¬
жения 1 и 2):
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a+jb

J y{p)eptdp.
a-jb

Вычисление оригинала, в соответствии с этим интегралом для

1
y(t)=L 1[>(/>)] = (3.12)

2nj

Ар)
изображений, являющихся дробно-рациональной функцией

такой, что степень числителя меньше степени знаменателя, имею¬
щего корни Ру,р2, Рп кратностей гу, г2, ..., гп, выполняют по фор¬
муле

Ар)’

г
к В(Рк)

1
y(t)=I lim (3.13)

(rk W-PÿP/c dpr,c 1 _k=1

Если изображение y(p) является такой дробно-рациональной

Ар)
функцией

теля и все корни знаменателя простые, т.е. Гу = r2 = rn = 1, то фор¬
мула (3.13) упрощается, приобретая вид:

, что степень числителя меньше степени знамена-
Ар)

hй'Ы (3.14)
МB\h)

Вычисление оригиналов для дробно-рациональных изображе¬

ний, в которых степень числителя равна степени знаменателя, будет
описана в дальнейшем после введения 8-функции.

Ниже приведены примеры, позволяющие лучше понять изложен¬
ный материал.

Пример 3.4
Тележка массой т находится в состоянии покоя. Тележка снабжена двига¬

телем, позволяющим реализовать различную силу тяги FT, не зависящую от ско¬
рости движения v. Сопротивление движению тележки линейно зависит от ско¬
рости: Fc — bv. В момент времени t = 0 включается двигатель и к тележке при¬
кладывается сила тяги Ет0. Требуется определить, как изменяется во времени
скорость движения тележки.

Составим вначале модель объекта. В соответствии со вторым законом Нью¬
тона уравнение движения тележки имеет вид:
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dv
m — -F -F .

dt i c

Примем, что Fc — bv, тогда

dv
m — + bv = F . (3.15)

dt

В момент времени t — 0 включается сила тяги FTQ, т.е.

WW.
при этом

dv
т— + bv-FA(t).

dt 0 w (3.16)

Перейдя к изображениям в левой и правой части линейного дифференци¬
ального уравнения (3.16), получим:

mpv(p) + bv(p) = FQ-.

Откуда

kF0v(p) = W(p)-± =
р р(\ + Тр)'

1/77
Т =- , к=~.

b ь
Знаменатель изображения v(p) имеет два простых корня:

где

1
Л=0; />,=--

Воспользовавшись формулой (3.14) перехода от изображений к оригина¬
лам в случае простых корней, получим искомую зависимость скорости движе¬
ния тележки от времени:

4')=я„(' -<я"").
/77

откуда очевиден физический смысл коэффициента Т = — как постоянной
b

времени тележки. С ростом Т скорость тележки растет медленнее. Действи¬
тельно,
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M‘) kAe-r
dt T

(3.17)

Пример 3.5
Усложним предьщущую задачу, дополнив объект управления (тележку) ре¬

гулятором скорости.
На рис. 3.5 показан объект управления — тележка, передаточную функцию

которой WT(p) получаем, переходя к изображениям левой и правой части диф¬
ференциального уравнения (3.15):

mpv(p) + bv(p) = FT(p),
откуда

I
1 Ьv(p) = FM= FM-mp + b ,+f„

Обозначив, к =-, T —— получаем передаточную функцию тележки:
т Ь т Ъ

к
W (р) = —5—

tV / Тр+1
(3.18)

Выход объекта управления — скорость v сравнивается в элементе сравне¬
ния с заданным значением скорости v3. На выходе элемента сравнения вели¬
чина рассогласования Av = v3 — v поступает на вход устройства управления,
преобразующего рассогласование Av в силу тяги в соответствии с заданным
пропорционально-интегральным законом управления:

»Л,
per О

F -k.Av + (3.19)
1т

где Аг| , &2 — коэффициенты усиления;

7рег — постоянная времени устройства управления — регулятора скорости.

zOAv<ф—3 vи/ Кiv

Рис. 3.5. Модель системы управления скоростью тележки
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Из выражения (3.19) следует, что управление FT, т.е. сигнал на входе объекта
управления — тележки, пропорционален сумме рассогласования и интеграла
от рассогласования заданного сигнала — скорости v3 и сигнала на выходе объекта
управления v. Поэтому название закона управления — пропорционально-ин¬
тегральный (ПИ). Переходя к изображениям, получаем:

к2 AV{P)
Fj(p) = k]Av(p) +

Т Рper

Следовательно, передаточная функция устройства управления (регулято¬

ра) имеет вид:

к2W (р) =per V/ = к. + (3.20)
1Лу(р) Теper

В соответствии с рис. 3.2

v(p) = Wj(p)Fj(p)- (3.21)

Fj(p) = Av(p)Wÿi(p)\

Av(p) = v3(p)-v(p).

(3.22)

(3.23)

Подставив (3.23) в (3.22), получаем:

7rTW=[v3W“vW]ÿperW- (3.24)

Далее подставив это выражение в (3.21), после простых алгебраических пре¬

образований имеем:

Ф)= v3(p) = W(p)v3(p), (3.25)
i+w(p)ivper(P)

где W(p) = — передаточная функция системы автоматичес-
|+ №»Жре»

кого управления скоростью движения тележки. Обратим внимание на то, что
объект управления так же, как регулятор, является составной частью системы.

Если тележка находилась в состоянии покоя и требуется разогнать ее до ско¬
рости у0, т.е. заданный входной сигнал имеет вид:

v3W=vo1W.
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то изображение входного сигнала:

Ф)=яМ=\
а изображение сигнала на выходе системы в соответствии с (3.11) имеет вид:

voV(P) = W(P)—-
Р

(3.26)

Подставим в (3.26) передаточную функцию системы, выраженную через

Wÿip) и lfper(p), тогда с учетом (3.18) и (3.20) получим:

к к.Т р+ к к~
т 1 регя т 2vW = v0 р[т Тр2+Т (к к. +\)р+ к

г\ per per V т 1 )г т 2/

к.
-— Т р + 1
к2 Рег

(3.27)Vт т
per тр2 + т,

per ктк2 Р+ 1Р кк
т 2

Введем обозначения:

Т Т ТрегГт к к<+ХL
т-Т
к2 Per

где Т0 > 0; Ту > 0; п > 0.

Тогда

per т _ j,2.
к к

~
1 ’

т 2

т 1=т
0’ = 2я ,

V*A

V+iv(p) = (3.28)V(r,V + 2«ri/.+l)Jp
Для перехода к оригиналу найдем корни знаменателя v(p):

р[т2р+ 2пТхр + = Ъ,

откуда

-2л7; ±яАп2Т2 -АТ2 -П±у/п2 -1
Л=°; />2,з 2Т2 /:

11
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В зависимости от значений п корни р2 з могут быть действительными или
комплексными.

Первый случай: п > 1, оба корня различные действительные, отрицательные
числа. Воспользовавшись формулой (3.14), перейдем к оригиналам:

/ /

Г2 Т Г\ т
2Л<)=\ е + е (3.29)

г2~г\ г2~г1

= п-уп2 -1; = n + yjn2 -1.где г{ г2
График переходного процесса приведен на рис. 3.6, а. Возможны различ¬

ные виды переходного процесса в зависимости от параметров системы: без пе¬
ререгулирования (сплошная линия), с перерегулированием (пунктирная ли¬
ния).

Второй случай: п < 1, корни — комплексные сопряженные, т.е.

1 1
Р2 =у \~п +И = -«+ 2а)св ; Ръ =-[~п ~ jr]=-а-Мсв,

1 1

1
= со VI -л2;

СВ с
а = лоо ; сос

Переходя к оригиналам, получаем:

со = —
С J

где г

п—
Т1 т,

v (/) = vQ < 1 — g
sin + Ф -yS\nÿ (3.30)

I 1 I

или

e — sinfco / + cp)-ÿ-sinco t L
r \ CB V J CBv« = v0 1

1

Г
где cp = arctg-.

//

6a e
vk V Avn
vo vo V0_

/
/

1t t

Рис. 3.6. Переходные характеристики системы управления скоростью тележки
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График переходного процесса приведен на рис 3.6, б.
Третий случай: п = 1, корень — действительное отрицательное число крат¬

ности 2. Воспользовавшись формулой (3.13), получаем:

zL

V(/) = V0 1+тф-#] (3.31)

График переходного процесса приведен на рис 3.6, в.
Во всех трех случаях в установившемся режиме, т.е. при t —» °о, v(/) —> vQ.

На этом примере удобно проиллюстрировать сущность задач
анализа и синтеза САУ. Определение реакции систем с заданными
параметрами на известный входной сигнал с целью выяснения со¬
ответствия переходного и установившегося режимов, сформулиро¬
ванным техническим требованиям, является задачей анализа САУ.

Выбор параметров регулятора при известном законе управле¬
ния с целью получения переходного и установившегося режима,
удовлетворяющего при заданных входных сигналах сформулиро¬
ванным техническим требованиям, является задачей параметри¬
ческого синтеза САУ. В данном примере известный закон управ¬
ления — пропорционально-интегральный. Параметрами регуля¬
тора, которые можно изменить, являются кх, к2, Грег. В частности,
одним из технических требований может быть монотонность пе¬
реходного процесса.

Наиболее сложной задачей является задача синтеза САУ, ре¬
зультатом решения которой является выбор закона управления и
его параметров с целью удовлетворения переходного и установив¬
шегося режима САУ сформулированным техническим требовани¬

ям при заданных входных сигналах. Эту задачу называют также ана¬
литическим конструированием регуляторов.

Рассмотрим далее пример, иллюстрирующий нахождение реак¬
ции линейной системы, модель которой содержит кратные корни,
на заданный входной сигнал.

Пример 3.6
Передаточная функция объекта управления задана и имеет вид:

w(p)=lTLtf-
(7> +1)
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Требуется найти сигнал y(t) на выходе объекта при входном сигнале

1
u(t) = 1(f), т.е. и(р) = ~.

Р

Изображение выходного сигнала у(р) равно:

y(p)= u(p)W(p)=-- -т.Р(Тр+1)2

Уравнение третьей степени р(7р+1)2 = 0 имеет корни = О кратности 1 и

корень р2 = -— кратности 2. Тогда оригинал выходного сигнала, т.е. реакцию

объекта на единичный скачок находим в соответствии с выражением (3.13):

п2к r d
--+ lim —

p{Tp + l) Dÿ-kdp
у(/) = lim pept

0
P +

T p(Tp+1)2T

t

.. - Arel”- =k
-IdplT2 p\

t
1- 1+- e т= k+ lim

TP-*

Отметим еще одно существенное свойство преобразования Лап¬
ласа, позволяющее в ряде случаев просто получать искомый резуль¬
тат. Пусть y(t) = L~ 1 [у(р) = W(p)x(p)} — сигнал на выходе системы,
когда на ее входе имеем сигнал х(/‘). Сигнал y{t) определяет переход¬

ный и установившейся режим функционирования системы. Обозна¬
чим сигнал установившегося режима ууст.

Очевидно, что у lim y(t), при условии, что этот предел су-
t—>°°

ществует. Значение ууст можно найти без перехода от изображения у(р)
к оригиналу. В соответствии со свойствами преобразования Лапласа

YC [

limy(/) = lim/ry(/?).
р—>0Г-> оо

Пример 3.7
Передаточная функция системы имеет вид:

И/Ы =-я-.v ' 7> +1
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На входе системы — единичный скачок x(t) = 1(7).
Требуется определить установившееся значение сигнала y(t) на выходе сис¬

темы.
Изображение для y(t) равно:

Изображение для x(t) равно:

1
Х(Р)=-.

Тогда

Значение функции y(t) при t —> 0 можно найти, также воспользо¬
вавшись свойством преобразования Лапласа (см. Приложение 1).

Если у(р) = Z,[y(/)], то lim у(/) = lim ру(р).

В примере 3.7

и lim y(f)= lim ру(р) = к.
р-> о

у(0) = lim р-———-— = 0.U
Ряоо (Тр +1)р

Определим связь между импульсной характеристикой и переда¬
точной функцией системы. Примем за основу формулу (3.11) для
определения изображения реакции системы:

y(p) = W(p)u{p).

Примем в этом выражении, что и(р) = 5(р) = 1, тогда у(р) = к(р) и
к(р) = W(p) или

L{k(t)} = W(p), т :e.{W(p)}.
Таким образом, передаточная функция описывает динамические

свойства системы в области оператора Лапласа.
Найдем оригинал для изображения, являющегося дробно-раци¬

ональной функцией, когда степень числителя равна степени знаме¬
нателя.

(3.32)
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Пусть

v"+y\Pn~l+-+a\P+%_A(p)

ЬУ+Ьп-\Р"~'+~
Разделив числитель на знаменатель, получим:

У(р) = (3.33)

°{р)а

у(р)=-ь'п+Ьпрп+Ь.рп-1 + -“ + Ь}р + Ь0
где Щр) — многочлен, степень которого не превышает п—1, — остаток от деле¬
ния А{р) на В(р).

Тогда

(а D(P)L~'[y(p)\ = L-' -*я +171 (3.34)
В(р)\

\ nj

(а
Так как Д5(/)] = 1, то L 1 =-p~L 1 (lÿ-ÿ-Sfr) и обратное пре-

b о о
V nj п п

образование Лапласа от второго слагаемого можно найти по форму¬
ле (3.13). Таким образом, получен способ определения оригинала

изображения

нателя.

Пример 3.8
Для условий примера 3.4 найти импульсную характеристику.
Передаточная функция объекта имеет вид:

А(р)
когда степень числителя равна степени знаме-

Цр)’

5L_L_
b 1+ 7/>’

W(p) =

откуда

(F
О =1±е~т1

k(t) = L~'
Ь 1+ 7/? I ЬТ
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Этот же результат получается при непос¬
редственном дифференцировании переход¬
ной функции (см. выражение 3.17).

Пример 3.9
Найти импульсную характеристику элек¬

трической цепи, приведенной на рис. 3.7. На
входе цепи напряжение и, на выходе напря¬
жение ивых.

В соответствии с законом Кирхгофа

С

о -о
/

R WBbIXU

О -О

Рис. 3.7. Электрическая цепь

t

и = — jidt + iR.со
Напряжение на выходе цепи ивых = iR.
Тогда

т

м =1&ыxdt + u .
С J р вых

Переходя к изображениям, получаем:

I

Откуда передаточная функция цепи при RC = Тимеет вид:

цвых(я) РТ
и(р) 1

W(p) =

Импульсная (весовая) переходная функция определяется как обратное пре¬
образование Лапласа от JV(p):

Так как изображение — отношение двух многочленов одинаковых степе¬
ней, то непосредственно использовать формулу обращения (3.14) нельзя. Раз¬
делив числитель W(p) на знаменатель, получим:

рТ 1
W(p) = =1-

1 + рТ'\ + рТ
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Тогда в соответствии с (3.14) и (3.32)

=5(0-е т.

Пример 3.10
Математическая модель системы описывается уравнением

dy
ш+а0у

Требуется определить реакцию системы на входной сигнал x(t) = bt.
Применяя преобразование Лапласа к левой и правой частям уравнения,

получим:

= х.

ру(р)+а0у(р) = х(р).

Следовательно, передаточная функция системы имеет вид:

w(p)=yM
х{Р) Р+%

Корень характеристического уравнения р + = 0 равен: ря = — я0. Тогда
импульсная характеристика системы в соответствие с формулой обращения
(3.14) имеет вид:

k(t) = L-l\W(p)\ = e а°*.
Реакцию системы на заданный входной сигнал найдем на основе интеграла

свертки в виде

т

y(t)= fe а°Гb(t -x)dx = — t ——(1-e
о йо йо1 >

До сих пор определялась реакция системы на заданный входной
сигнал как результат решения неоднородного дифференциального
уравнения (дифференциального уравнения, правая часть которого
отлична от нуля). Можно анализировать процессы в системе при от¬
сутствии сигнала на входе, рассматривая изменения выходного сиг¬
нала во времени при ненулевых начальных условиях. По существу тре¬
буется определить решения однородного дифференциального урав¬
нения при ненулевых начальных условиях. Пусть модель объекта в
соответствии с (3.5) при отсутствии входного сигнала имеет вид:
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Л ,i

h ' dt

Начальные условия зададим в виде

= 0. (3.35)
/

л-2d"~X _ L . d
Ьп-Г

У У = bv y(0) = b0.= bn-V •”
’ dtdtn~2dtn~l /=ot=0

Используя преобразование Лапласа, с учетом ненулевых началь¬
ных условий, получаем:

[р"-'у(р)-р
ъ +л-1

Ьп-2]п-2 л-3
*0 -Р

1[ру(р)-Ь0]+а0у(р) = 0.

Ь.+0 + •я•+л-1 1

+<г/

Откуда

л-1 л-2л

У(р)Ца.р‘ =а„яЬ р‘+ +---+яА.
л-2-/ 10

1=0 /=0 1=0

Следовательно,

1 аАГ'+К*,+а„-1*о)ял-2 +

/=0

+ (й i+fl .Ъ.л-а
\ п 2 л-11

л-3
+ •••+ (3.36)п-2

Чр)
+0А]-+# b . +а .Ь ~ л- а Л) ,

л л-1 л-1 л-2 л-2 л-3 МрУ

Переходя от изображений к оригиналам в соответствии с фор¬
мулой (3.14), получаем решение однородного дифференциального
уравнения (3.35), которое называют свободной составляющей пере¬
ходного процесса.
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Пример 3.11
Требуется найти свободную составляющую переходного процесса для сис¬

темы, модель которой при нулевом входном сигнале имеет вид:

+3+ + 2, = 0.
Л2 Л

Начальные условия заданы:

dy
У{0) = 5, — = 2.

dt t=о

Характеристичное уравнение системы /?2 + 3/? +2 = 0 имеет два корня />( = — 1 ,

р2 = -2.
Изображение сигнала на выходе системы

5/> + 2+3-5 5/> +17

р2 + 3/> + 2 р2 +3р + 2
у(р)=

Переходя к оригиналам по формуле (3.14), получаем свободную состав¬
ляющую переходного процесса:

y(t) = \2e4-le~2t.

Очевидно, что

с/у
=-Печ +\4e~2t\=5, = 2

dt 1/=0/=0

соответствует условию задачи

dy
lim у(/) - 0, Иш — = О,

dtt—>оо
t—><х>

что свидетельствует о возвращении системы в состояние покоя.

Итак, получена реакция системы на изменение начальных усло¬
вий. Ранее различными способами решалась задача определения
сигнала на выходе системы при заданном входном сигнале и нуле¬
вых начальных условиях. Осталось рассмотреть реакцию системы на
входной сигнал при ненулевых начальных условиях.
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Пусть модель системы имеет вид:

Д dly dÿu
М77=2>,Т7’
i=o dt j=о dt

Начальные условия заданы:

т<п.
i

d„-i п-2

=ь ± , . .dy
п-2’"" dt

У У =ь = Ь];у(0) = Ь0.л-1’ dt"-2dt"-' t=оt=о /=0

Используя преобразования Лапласа с учетом ненулевых началь¬
ных условий, получаем:

ап[рпу{р)~Р V.]л-2л-1
*о

[р"Мр)-р"-\

ь, -••• +

л-3& 6+Я +-Р л-2л-1 1

т

[ру(р)-Ь0]+а0у(р)='яс pJu(p)+ --- + Л
I

у=о

откуда

т

ScjPJ
Dip) , /=о•Ф) «(/>), (3.37)

где /)(/?) — числитель (3.36);
Л(/>) — знаменатель (3.36);

7=0 = (/?) — передаточная функция системы.
а(р)

Переходя к оригиналам, получаем:

Чр)
y(t) = L-' + L-'[W(p)u{p)\, (3.38)

а(р).
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где первое слагаемое — свободная составляющая переходного процесса, второе
слагаемое — реакция системы с нулевыми начальными условиями на входной

сигнал — так называемая вынужденная составляющая.

Таким образом, в общем случае сигнал на выходе системы опре¬
деляется суммой свободной и вынужденной составляющих.

3.3. Понятие об устойчивости линейных систем.
Условия устойчивости А.М. Ляпунова

Допустим, что на входе линейной системы, описываемой урав¬
нением (3.5), имеется не изменяющийся входной сигнал. Тогда
система в момент времени t < т0 будет находиться в установив¬
шемся состоянии. Это значит, что все ее фазовые координаты yi
не будут зависеть от времени, т.е. будет выполняться условие:

у. = 0 и фазовые координаты будут равны у0/. Допустим также, что
в момент времени t > т0 к системе приложено внешнее воздей¬
ствие, вызывающее переходный процесс движения системы. Ли¬
нейная система является устойчивой, если после приложения внеш¬
него воздействия она с течением времени возвратится в прежнее
исходное установившееся состояние или перейдет в новое устано¬
вившееся состояние. В противном случае линейная система будет
неустойчива.

Строгие и законченные обоснования условий устойчивости

были впервые выполнены А.М. Ляпуновым в 1870 г. Им были
сформулированы две теоремы устойчивости, до сих пор не поте¬
рявшие своего значения. Ограничимся упрощенным рассмотре¬
нием первой из этих теорем. Эта теорема сводится к тому, что для
исследования устойчивости линейной системы достаточнорассмот¬
реть ее свободное движение, возникающее при действии ненулевых
начальных условий.

Для определения свободного движения системы необходимо

найти решение однородного дифференциального уравнения:

п

2Г .я4+0.ky,dt‘ (3.39)
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Частное решение этого уравнения имеет вид:

(3.40)
/=о

где Dj — постоянные интегрирования, определяемые из начальных условий;

— корни характеристического уравнения.

В соответствие с (3.40) вид свободного движения целиком опре¬
деляется характером корней pv Рассмотрим возможные результаты.

1. ру = —а — отрицательный вещественный корень.
В этом случае составляющая свободного движения (3.40) имеет

вид: усв] = Охе~ш. График этой составляющей (рис. 3.8, а) является
затухающим, и, следовательно, данная составляющая свободного
движения — устойчива.

2. /?2 = ос — положительный вещественный корень.

В этом случае составляющая свободного движения (3.40) имеет
вид: усв2 = График этой составляющей (рис. 3.8, б) представ¬
ляет собой неограниченно возрастающую функцию, и, следователь¬
но, такая составляющая свободного движения — неустойчива. Такое
движение совершает шарик, находящийся на вершине выпуклой
поверхности. Под действием ненулевого начального условия шарик
сдвинется от положения равновесия и затем начнет неограниченно
удаляться от этого положения.

3. /?3 = 0 — нулевой корень.
Составляющая свободного движения (3.40) имеет вид: усв3 = Z>3.

График этой составляющей (рис. 3.8, в) представляет собой горизон¬
тальную прямую. Это значит, что под действием начального условия
система отклонится от положения равновесия и останется в таком

ба в
Ус.1 Усв2 УсвЗ

А
А

А
о о о

t tt

Рис. 3.8. Графики свободного движения:

а — р{ = -а; б-р2 = -а;в — р3 = 0
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состоянии, а степень удаления от положения равновесия определя¬
ется величиной начального условия, т.е. величиной /)3. Такое дви¬
жение совершает шарик, расположенный на горизонтальной по¬
верхности с трением. Под действием ненулевого начального усло¬
вия шарик удаляется от положения равновесия на величину
постоянной интегрирования D3 и остается в этом положении. Со¬
ставляющую свободного движения усв3 называют нейтральной. При
таком движении говорят, что система находится на границе аперио¬
дической устойчивости и малейшее изменение ее параметров в ре¬
зультате старения или износа может перевести систему в устойчи¬
вый или неустойчивый режимы работы.

4. /?4_i = —а + усо и /?4_2 = —а — усо — пара комплексно сопряжен¬
ных корней с отрицательной вещественной частью.

Составляющая свободного движения (3.40), соответствующая
этим корням, имеет вид:

= D. J~a+j(i))t + D е( a+juj}t _ р*е +

где Z)4_|и /)4_2 или /)4* и ф — постоянные интегрирования.

График этой составляющей (рис. 3.9) представляет собой зату¬
хающую синусоиду, сдвинутую относительно начала координат на
угол ср. Такая составляющая свободного движения устойчива.

5. р5_{ = а +у'со и р5_2 = а — уо) — пара комплексно сопряженных
корней с положительной веще¬
ственной частью.

Составляющаясвободногодви¬
жения, соответствующая этим кор¬
ням, имеет вид:

4-1 4-2

Усв4

°4

ycBr-DsJa+jm)'+Ds-/a+lm),=
= D*eatsm(wt + ф),

где D5_ J и Z>5_2 или Z>5* и ф — посто¬
янные интегрирования.

График этой составляющей
(рис. 3.10) представляет собой на¬
растающие колебания, сдвинутые

0
t

-А-.-

Рис. 3.9. График свободного движения
при комплексно сопряженных корнях
с отрицательной вещественной частью
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•Усв5относительно начала координат на
угол (р. Такая составляющая свобод¬

ного движения неустойчива.
6. р6_х = +/CD и/?5_2 = —уо) — пара

чисто мнимых корней (комплекс¬

ных корней с нулевой вещественной
частью).

Составляющая свободного дви¬
жения, соответствующая этим кор¬
ням, имеет вид:

А
О

t“А

Рис. 3.10. График свободного дви¬
жения при комплексно сопря¬
женных корнях с положительной

вещественной частью

= = O6*sin(cor + <p),

где D(,_|и Z)g_2 или D(* и ср — постоянные интегрирования.

График этой составляющей (рис. 3.11) представляет собой неза¬
тухающие периодические колебания, сдвинутые относительно на¬
чала координат на угол ср.

Такая составляющая свободного движения нейтральна. При та¬
ком движении говорят, что система находится на границеколебатель¬
ной устойчивости и малейшее изменение ее параметров в результате
старения или износа может перевести систему в устойчивый или не¬
устойчивый режимы работы.

Поскольку свободное движение системы в соответствие с (3.40)
определяется как сумма отдельных составляющих, а также в связи с
тем, что составляющие, соответствующие корням с отрицательной
вещественной частью, затухают,
то через некоторое время все
свободное движение будет оп¬
ределяться только теми состав¬
ляющими, которые соответ¬
ствуют корням с положитель¬
ной или нулевой вещественной
частью.

Таким образом, располагая
корни характеристического
уравнения на комплексной об¬
ласти (рис. 3.12), можно сфор-

Усвб

А

о *г

-А

Рис. 3.11. График свободногодвижения
при комплексных корнях с нулевой ве¬

щественной частью
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JQ мулировать условия устойчи¬

вости линейных систем:
1. Система является ус¬

тойчивой, если все корни ее
характеристического уравне¬
ния — левые (лежат в левой
полуплоскости).

2. Система является неус¬
тойчивой, если среди левых
корней характеристического
уравнения имеется хотя бы
один не левый корень.

3. Система находится на
границе апериодической устой¬
чивости, если среди левых
корней характеристического
уравнения имеется хотя бы
один нулевой корень.

4. Система находится на границе колебательной устойчивости,

если среди левых корней характеристического уравнения имеется,
хотя бы один чисто мнимый корень, т.е. комплексный корень с ну¬
левой вещественной частью.

Как следует из выполненного анализа, оценка условия устойчи¬

вости движения определяется видом корней характеристического
уравнения. Однако отыскание этих корней не представляет трудно¬
стей, если порядок характеристического уравнения не выше трех.
Вычисление корней уравнения четвертой степени уже сопряжено с
определенными трудностями. В двадцатых годах XIX в. Абель дока¬
зал, что формулы для определения корней алгебраического уравне¬
ния через коэффициенты этого уравнения не могут быть найдены,
если степень уравнения п > 5. Поэтому разработчику систем управ¬
ления необходимо уметь делать выводы о результатах моделирова¬
ния, не решая систему уравнений, т.е. без определения корней ха¬
рактеристического уравнения. Для этого разработаны так называе¬
мые критерии устойчивости, которые позволяют сделать вывод об
устойчивости систем без вычисления корней характеристического
уравнения. Эти критерии будут рассмотрены во второй части насто¬
ящего учебника.

I/
Ра- 1 • />6-1 •Рь-\/

/
/
/
/

/
/
/

Р\ Ръ Pi/

/
Р/

/
/
/
/
/
/

Ра-2 • / Рб-2 •Р5-2/

Устойчивое Движение Неустойчивое
движение на грани движение

устойчивости

Рис. 3.12. Расположение корней характе¬
ристического уравнения на комплексной

плоскости
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Глава 4. ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ

ЛИНЕЙНЫХ НЕПРЕРЫВНЫХ СИСТЕМ

4Л. Частотные характеристики устойчивых систем

При анализе линейных систем рассматривают переходную функ¬
цию h(t) и импульсную (весовую) характеристику k(t), определяемые

соответственно как реакция линейной системы на сигналы 1(t) и 8(/)
(см. главу 3, п. 3.2). Эти характеристики называются временными.
Если в качестве типового сигнала выбрать гармонический сигнал, то,
как будет показано ниже, можно получить различные частотные ха¬
рактеристики системы, определяемые ее динамическими свойствами.

Пусть модель системы описывается линейным дифференциаль¬
ным уравнением с постоянными коэффициентами. Будем искать
реакцию такой системы на гармонический сигнал:

х(/) = xQ (со) cos (со/ + Ф0),
где х0(ы) — амплитуда гармонического входного сигнала;

со — частота, имеющая свободную и вынужденную составляющие.

В установившемся режиме при / —» °° в устойчивых системах сво¬
бодная составляющая стремится к нулю. Вынужденная составляю¬
щая, как известно из теории дифференциальных уравнений, явля¬
ется гармоническим сигналом той же частоты, амплитуда и фаза ко¬
торого отличается от соответствующих параметров входного сигнала:

(4.1)

Нт у(/) = у0 Нc°s[ш/ + ф0 +<р(ш)], (4.2)

где у0(со) — амплитуда гармонического сигнала с частотой to на выходе систе¬
мы;

Ф0(ю) — изменение фазы гармонического сигнала с частотой to.

Очевидно, что в тривиальном случае, когда система безынерци¬
онна и у0(/) = kx(t), фазы выходного и входного сигналов равны,
т.е. ф(оо) = 0, а амплитуды связаны соотношением
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J>o((o) = foc0(“)-

Амплитудной частотной характеристикой системы называют
зависимость отношения амплитуды гармонического выходного
сигнала к амплитуде гармонического входного сигнала от частоты:

=яо И
*0(ш)

Л(ю) (4.3)

Фазовой частотной характеристикой называют зависи¬
мость разности фаз гармонического выходного сигнала и гармо¬
нического входного сигнала от частоты. При введенных в (4.2)
обозначениях фазовой частотной характеристикой является cp(w).
Особенности ее определения будут даны ниже. Подчеркнем, что
сигналы на выходе системы рассматриваются в установившемся
режиме.

Очевидно, что возможным путем аналитического получения ча¬
стотных характеристик может быть определение вынужденной со¬
ставляющей решения дифференциального уравнения, являющегося
моделью системы, при гармоническом входном сигнале с дальней¬

шим вычислением Л(со) и ф(м).
Экспериментально частотные характеристики устойчивых ли¬

нейных систем могут быть получены после измерения зависимо¬
сти от частоты амплитуды сигнала на выходе системы и разности
фаз между гармоническим сигналом на выходе и входе системы.
Следует отметить, что измерение соответствующих параметров не¬
обходимо проводить после окончания переходных процессов.

Приведенные рассуждения описывают физический смысл частот¬
ных характеристик устойчивых систем. Вместе с тем для решения
дифференциального уравнения, являющегося моделью системы,
необходимо вычисление корней его характеристического уравнения.
Как уже было сказано, при 4-м порядке дифференциального урав¬
нения это сопряжено с определенными трудностями, а при порядке
выше четвертого корни не выражаются аналитически через коэф¬
фициенты уравнения. Поэтому поставим задачу получения частот¬
ных характеристик без решения дифференциального уравнения.
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Пусть W(p) — передаточная функция системы, получаемая при
известном дифференциальном уравнении системы. Будем рассмат¬
ривать входной сигнал вида

*(/) = xQeJ03t = XQCOSOat + yx0sinto/.

Так как работа системы описывается линейным оператором, то
решение уравнения при данном x(t) является суммой решений для
действительной и мнимой частей. Изображение по Лапласу входно¬
го сигнала (4.4.) имеет вид:

(4.4)

*0*w=4VM']=
p-jto

Изображение реакции линейной системы на этот входной сигнал

*0y{p) = W(p)x(p) = W(p)
p-j®

Пусть передаточная функция системы имеет вид:

М(р)
W(p) = (4.5)

N(PY

где М(р) и N(p) — многочлены соответственно /и-й и п-й степени при условии,
что т<п.

М(р) х0Тогдау(/>) =

мулу обращения.
Уравнение N(p){p — усо) = 0 имеет п+1 корней, из которых п нахо¬

дится из уравнения N(p) = 0 и один из условия р —усо = 0, т.е. рп+ j =усо.
Для упрощения выкладок положим, что п корней Рп харак¬
теристического уравнения системы различны. Тогда в соответствии
с формулой обращения

, и оригинал y(t) найдем, используя фор-
N(p)p-усо

гяЫл' м(Мем
N(jo>)

й')=1 + хо
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В устойчивой системе корни рк имеют отрицательную действи¬
тельную часть. Следовательно, при / —» °о первое слагаемое этого вы¬
ражения стремится к нулю и

м(М

ЩЩ'
j(OtУ(>) = х0е

t—>°°

Откуда следует, что установившееся значение сигнала на выходе

линейной устойчивой системы при входном сигнале хяе
произведению этого сигнала на передаточную функцию системы
после замены р наусо, т.е.

j<at равно

]imy(t) = x ej(0tW(j(x)).
t—¥оо

(4.6)

Переходя к показательной форме записи комплексной перемен¬
ной, получаем:

W (усо) = А (со) , (4.7)

при этом

lim y(t) = A (со)е7<рН v (4.8)

Из этого выражения очевидно, что Дсо) является амплитудной
частотной (АЧХ), а ф(со) — фазовой частотной (ФЧХ) характеристи¬
ками. Более подробное рассмотрение ФЧХ будет выполнено ниже.

Таким образом, АЧХ и ФЧХ получают после подстановки в вы¬
ражение передаточной функции р = усо и перехода к показатель¬
ной форме записи функции комплексной переменной. Следова¬
тельно, поставленная выше задача получения частотных характе¬
ристик без решения дифференциального уравнения, выполнена.

Частотной характеристикой (ЧХ) называют выражение

W(jm) = A(m)eJ‘ÿs>\ (4.9)

Эту характеристику получают после подстановки р = усо в выра¬
жение передаточной функции Щр). Представление Щ/(о) в алгеб¬
раической форме

Ж(усо) = Р(со) + у0(со) (4.10)
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дает еще два вида частотных характеристик: вещественную частот¬
нуюхарактеристику Дсо) и мнимую частотнуюхарактеристику 0(оо).

Очевидна связь АЧХ с Р(оо) и <2(<х>):

Л(со) = (со) + 02 (со). (4.11)

Вернемся к определению фазовой частотной характеристики.
Аргумент (Arg) комплексного числа Ж(/оо) = Р(со) +/я)(со) при фик¬
сированной частоте ш определяется (рис. 4.1) с точностью до любого
слагаемого, краткого 2тг:

оИ+ 2kn, I и IV квадранты;arctg
/>(»)

Ф* (со) = Arg W (у'со) = <

ом+ (2к +1) п, II и III квадранты,arctg
Н<°)

71
где arctg определяется в диапазоне +— , к= 0; ±1; ±2; ±3;....

2
Символ Arg W(jw) обозначает всю совокупность значений ар¬

гумента. В дальнейшем будем употреблять символ Arg ИяХ/со), обо¬
значая им одно какое-либо из значений Arg W(jv)), в случае необ-

Q

I Ща>) 11(?,(©)

Q2(<o)
Р2(со)

QM
Р\{ш)

ас») arctgarctg Р2Ы< Ф.

Л(®) Л(®) Р

(?3(®)'
Л(®)

arctg
<?з(ю)

III IV
(?4(со)

Л(®)
<24(со)
Л(ю)

arctg

Рис. 4.1. К определению аргумента комплексного числа
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ходимости специально оговаривая, какое именно значение берет¬

ся. В ряде случаев удобно через Arg Ж(/оз) обозначать значение
аргумента, заключенное в пределах ф0 > Arg Wijco) > -2тс+ф0, где ф0
произвольное фиксированное число. В теории автоматического

Я 7L .
т1/ / • \ Зя

управления обычно принимают Ф0 =-•Тогда -<Argw [jо))< —— и

Arg W(ju>) = Arg Ж(/'со) ±2nk.
Следовательно,

при Q(co)>0 и />(со) = 0;

при />(со)>0;

при (9(со)<0 и />(со) = 0;

при />(со)<0.

еНarctg

Ф* (со) = Arg W (усо) = <

(4.12)

он-п+ arctg
Р(со)

В соответствии с приведенными соотношениями принято поло¬
жительное значение ф*(со) отсчитывать от положительного направ¬
ления вещественной оси против часовой стрелки, а отрицательное —
по часовой стрелке.

Фазовой частотной характеристикой системы, в отличие от аргу¬
мента Arg Ж(до) комплексного числа, определенного в диапазоне от

Зл
- , принято считать величину ф(со) на тех частотах, при ко-
2--до -

2

торых Ьф*(соЬ-я, и являющуюся непрерывным продолжением
2 w 2

Ф*(со) при больших частотах. Принято считать:
если (2(0) = 0, то ф(0) = 0;

Ж2(/со) = (/со)ЛВ/1(/'со), тоесли

при lim W (усо) > 0;
м->0 1

71+-я- при lim WJ (усо) < 0.

п-

ф(о)= 2
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Фазовую частотную харак¬
теристику рассчитывают при
изменении частоты от 0 до оо.

Пусть, например, при со = О
значение ср(0) = 0 (рис. 4.2).
При увеличении со от 0 до 10
рад/с значение ср(со) изменя-

Q

II I

я
6

1ш >оз=0 Р

у'ю=10 Рад/с

1=100 Рад/с
ется от 0 до . При измене-

6
нии со от 10 до 100 рад/с ком¬
плексное число Ж(/со) нахо¬
дится вначале в IV квадранте

комплексной плоскости (см.
рис. 4.2), затем в III, II и I,
после чего попадает опять в

Я
III IV4

Рис. 4.2. К определению ФЧХ

IV квадрант и при со = 10 рад/с его аргумент равен — .В этом слу-
4

чае величину ср(со = 100 рад/с) рассчитывают следующим образом:
_ ТЕ

-271--ср(со = 100 рад/с) =
4

*

4.2. Способы представления частотных характеристик

Частотную характеристику
(ЧХ) графически представляют на
комплексной плоскости (рис. 4.3).
При этом для фиксированного
значения со = со,- откладывают по
мнимой оси величину Q{со,-), а на
действительной оси величину
Р(со,-) и получают точки ai на плос¬
кости, соответствующие W(jсоу).
Соединив начало координат с точ¬
кой at, получаем вектор ВяС/со,-).
При изменении частоты от 0 до °°
вектор Щ/'со) изменяется по моду¬
лю и поворачивается, поскольку
его аргумент ср(со/) также зависит от
частоты. В результате конец векто-

Q

/ ч —QO

/ S

/
\I

\ оI

\(0=(01+3 Р(Щ) \С0=00

(0=0 р
чф(С0,)

оз=со 1

7°<2Ю ydi 00

03=03,03=03,+2

03=03,+!

Рис. 4.3. Пример АФХ линейной
системы
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pa опишет кривую, которую называют годографом ЧХ или
амплитудно-фазовой характеристикой (АФХ) [1, 30, 32]. АФХ
снабжается соответствующими частотными отметками и стрелкой,
указывающей направление изменения частоты от 0 до «>.

Выражение (4.10) представляет собой уравнение этого годографа

в зависимости от параметра со в декартовых координатах. Выраже¬
ния (4.9), (4.11) и (4.12) являются параметрическим уравнением го¬
дографа в полярных координатах.

АФХ, приведенная на рис. 4.3, соответствует системе третьего по¬
рядка (п = 3) с частотной характеристикой

к
W(jv>) =

(1+ >Г1)(1+ утГ2)(1+ут7’3)'
В дальнейшем в п. 4.3 для получения импульсной характеристи¬

ки потребуется выполнить интегрирование ЧХ при изменении ча¬
стоты со от —°о до оо. Поэтому рассмотрим годограф ЧХ при отрица¬
тельных частотах, когда передаточная функция задана отношени¬
ем полиномов М(р) и N(p) соответственно т-й и п-й степени (см.
выражение (4.5)). Если в полиноме любой степени относительно р
сделать подстановку р = у'со, то получим полином относительно со.
Причем коэффициенты этого полинома при четных степенях со бу¬
дут действительными числами, при нечетных степенях со — мни¬
мыми. Если в этом же полиноме сделать подстановку р = —/со, то
его коэффициенты при четных степенях со не будут отличаться от
коэффициентов ранее полученного полинома, т.е. знаки действи¬
тельных коэффициентов не изменятся, коэффициенты полинома
при нечетных степенях со будут иметь противоположный знак, т.е.
изменятся знаки у мнимых коэффициентов. Следовательно, полу¬
ченные при этих подстановках степенные функции будут комплек¬
сно-сопряженными. Применительно к передаточной функции (4.5)
при подстановке р =jiо получаем:

Л/|(ш) + уМ2(ш)_
у (w)+7'Af2(co)

”lV(p = jw) =

[л/, (to) jVt (о)) + м2 (со) лг2 (ю)]-][м{ (со) лг2 (со)-М2 (м) N{ (со)]
, (4.13)

N[!(W)+1V22H
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при подстановке р = —усо:

Л/,(й))-УМ2((о)
W(p=-Jw)

_[м, (со) Nx (со) + М2 (to) jV2 (со)]- j[м2 (to) iV, (to)-Л/, (со) у, (о)]
. (4.14)

Сравнение выражений (4.13) и (4.14) свидетельствует о том, что
при отрицательных частотах функция комплексного переменного
является комплексно-сопряженной ЧХ при положительных часто¬
тах. Отсюда получаем два утверждения:

- вещественная частотная характеристика системы с дробно-ра¬
циональной передаточной функцией является четной функцией ча¬
стоты;

— мнимая частотная характеристика системы с дробно-рацио¬

нальной передаточной функцией является нечетной функцией час¬
тоты.

В пункте 4.3 будет доказано, что эти утверждения справедливы
не только для систем с дробно-рациональными передаточными фун¬
кциями.

На рис. 4.3 пунктирной линией показана АФХ рассмотренной

системы при отрицательных частотах.
Рассмотрим примеры построения частотных характеристик ли¬

нейных непрерывных систем.

Пример 4.1
Построить частотные характеристики идеального интегратора, модель ко¬

торого имеет вид:

t

Д')=*1 /*(')<*•
о

Передаточная функция интегратора определяется выражением

к.
W(p)=

р
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Сделав подстановку р =усо, получаем:

и;®)=— =-А
JО) (О

(4.15)

Откуда следует, что вещественная частотная характеристика интегратора

/>((!)) = 0.

Мнимая частотная характеристика интегратора

к
QH = —;О)

Переходя в (4.15) к показательной форме функции комплексной перемен¬

ной, получим:

к. -Я
е 1.«'И = Т7

0)

(4.16)

Откуда следует, что АЧХ интегратора имеет вид:

к
со

(4.17)

ФЧХ интегратора не зависит от частоты:

<p(“>)=-f. (4.18)

Графики АЧХ, ФЧХ и АФХ приведены на рис. 4.4. АФХ интегратора (см.
рис. 4.4, в) совпадает при изменении со от 0 до °° с отрицательной частью оси
ординат.

Пример 4.2
Построить частотные характеристики идеального дифференциатора, мо¬

дель которого имеет вид:

ба в

Дю)п ср(со) А
Р00 С0=со

со со t
о2 ео=0со

Рис. 4.4. АЧХ (а), ФЧХ (б) и АФХ (в) интегратора
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dx
У(‘) = к~п-clt

Передаточная функция дифференциатора определяется выражением

Щр) = кр.

Сделав подстановку р = усо, получим:

W (уса) = Дсо.

Откуда следует, что вещественная частотная характеристика дифференциа-

(4.19)

тора

Дсо) = 0;

мнимая частотная характеристика

(?(со) = ксо.

Переходя в (4.19) к показательной форме записи функции комплексной
переменной, получим:

У?
W(j(o) = k(oe 2. (4.20)

Откуда следует, что АЧХ дифференциатора имеет вид:

Л(со) = кш. (4.21)

ФЧХ дифференциатора не зависит от частоты:

фИ=? (4.22)

Графики АЧХ, ФЧХ и АФХ приведены на рис. 4.5. АФХ дифференциато¬
ра (см. рис. 4.5, в) совпадает при изменении со от 0 до °о с положительной

частью оси ординат.

ба

Л(ю) Ф(ю) Q

(0=0000

“t
о

— Е
2

со=0 Рсо со

Рис. 4.5. АЧХ (а), ФЧХ (б) и АФХ (в) идеального дифференциатора
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Частотная характеристика системы определяется выражением
(4.9). Прологарифмируем это выражение:

In W (уса) = In А (со) + /ср(со).

Отсюда следует, что логарифм ЧХ равен функции комплексной
переменной, действительная часть которой равна логарифму АЧХ,
мнимая — ФЧХ.

Если по оси абсцисс откладывать значение частоты со в логариф¬
мическом масштабе, а по оси ординат 1пА(со) и ср(со), то получим со¬
ответственно логарифмические амплитудную и фазовую частотные
характеристики. Первая сокращенно записывается ЛАЧХ, вторая —
ЛФЧХ[1].

Логарифмические характеристики в теорию автоматического уп¬
равления пришли из акустики, где принято использовать десятич¬
ные логарифмы. Для построения логарифмической амплитудно-ча¬
стотной характеристики находят величину

£(co) = 201gy4(co), (4.23)

где Л(со) — АЧХ системы.

Величина Доо) выражается в децибелах. Пусть под знаком lg
находится отношение мощности сигнала на выходе системы к мощ-

Р
ВЫХ . При десятикратном увеличенииности сигнала на его входе: lg
Р

вх
мощности сигнала эта величина имеет единицу измерения в 1 Бел.

При стократном увеличении мощности сигнала логарифм отноше¬
ния мощностей равен 2 Бела и т.д. Децибел равен одной десятой Бела.

Р
выхПоэтому при использовании децибелов следует вычислять 1Olg
Р

вх

Однако Дсо) представляет отношение не мощностей, а выходной и
входной величин. Примером таких величин может быть напряже¬
ние U, ток /и т.д. Мощность сигнала пропорциональна квадрату этих

ш2 и
величин. Тогда T(a)) =101g вых 111.14= 201g , поэтому в выражении

ки2 и
вхвх

(4.26) стоит множитель 20.
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Рассмотрим, какому изменению амплитуды сигнала соответ¬
ствует величина один децибел (1дБ):

U
Ш.]\1 дБ = 201g

U
вх

Откуда

1
U

=ю2о=ад.ы\

U
вх

Итак, 1 дБ соответствует изменению амплитуды в 2яУ10 раз.

В рассмотренном случае выходная и входная координаты изме¬
рялись в одинаковых величинах (например, в вольтах). Вместе с тем
сигналы на входе и выходе системы могут быть различной физи¬
ческой природы. Например, на входе системы — напряжение, из¬
меряемое в вольтах, на выходе — перемещение, измеряемое в мет¬
рах. Тогда вводится некоторая базисная величина, соответствую¬
щая размерности передаточной функции и равная 1, например,

хб = 1 м/В. Под амплитудной частотной характеристикой в этом

случае будем понимать отношение — /4(ш) . По существу, использу-

ется условный прием, не изменяющий числовых результатов. Как
уже указывалось выше, при построении логарифмических частот¬
ных характеристик по оси абсцисс откладывается величина w в ло¬
гарифмическом масштабе. При этом также используют термино¬
логию, принятую в акустике. Увеличение частоты вдвое называет¬
ся увеличением частоты на октаву. Увеличение частоты в 10 раз
называется увеличением частоты на декаду.

При использовании логарифмического масштаба существен¬
ным является вопрос о выборе начала координат по оси абсцисс, так

как lim lgjc =-°°. По оси абсцисс минимальной выбирается такое
х->0

значение частоты, при котором от нее можно показать весь ход ло¬
гарифмических частотных характеристик — это может быть величи¬
на 1, 0,1, 0,01 и т.д. рад/с. При построении ЛАЧХ величине 0 по оси
ординат соответствует значение Л(со) = 1, так как lgl =0.
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Рис. 4.6. ЛАЧХ (а) и ЛФЧХ (б) интегратора

При построении ЛФЧХ по оси ординат откладывается фаза в
градусах в линейном масштабе, причем с осью абсцисс принято со¬
вмещать величину —180°.

На рис. 4.6 приведены ЛАЧХ и ЛФЧХ для системы третьего по¬
рядка, АФХ которой представлена на рис. 4.3.

4.3. Связь частотных и временных характеристик

Передаточная функция является преобразованием Лапласа от
импульсной характеристики k(t) (3.32), т.е.

оо

W(p) = L\k(/)] = Jk{t)e~ptdt.
о
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Для физически реализуемых систем (см. главу 3) сигнал на выхо¬
де системы не может появиться раньше, чем сигнал на ее входе. По¬
этому k(t) = 0 при t < 0. При этих условиях можно записать:

W(у'ю) = \k(t)e~Jtt"dt=
0 —оо

(4.24)

т.е. выражение (4.24) определяет ЧХ как преобразование Фурье
от импульсной характеристики. Следовательно, частотная харак¬
теристика однозначно может быть получена путем использования
преобразования Фурье от импульсной (весовой) характеристики в
соответствии с (4.24). Импульсная характеристика k{t) при изве¬
стной W(jiо) может быть получена путем использования обратно¬

го преобразования Фурье в соответствии со следующим выраже¬
нием:

k(t) = Y~ J W(Mejwtd(D. (4.25)

В данном случае интегрирование осуществляется при измене¬
нии частоты в диапазоне —°° < (о < °°

Дополнительно отметим, что условием использования преоб¬
разования Фурье является абсолютная интегрируемость ориги¬
нала, т.е.

Jk(t)dt = Л.
о

Последнее справедливо для устойчивых систем автоматического
управления (все полюса передаточной функции Щр) находятся в
левой полуплоскости).

Покажем далее связь импульсной характеристики с веществен¬
ной Re[ ИяХ/'ш)] = Р(ы) и мнимой ImfB'fyc))] = (2(ш) частотными ха¬
рактеристиками. Подставив в (4.25)

J(OlfV(j(o) = P((o) + JQ((o) = cosШ + y'sin Ш, получим:и е
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k(t) = — J [/*(to) + jQ(to)](cos tor + y'sin to/)dw =

=y- J />(to)costo/dto+ j J />(to)sinto/t/to+

oo oo

+j J £?(to)costo/t/to- J (?(to)sinto/t/to .

Как показано ранее в п. 4.2, Доо) — четная функция to, (?(to) —
нечетная функция to. Учитывая четность функции cos to/ и нечет¬
ность sin to/, получим, что второе и третье слагаемое предыдущего
выражения равны 0 и

k(t)-- J/>(to)costo/t/to-i J(?(to)sinto/t/to.
"о по

(4.26)

Из условия физической реализуемости системы, т.е. из равенства
нулю k(t) при отрицательном аргументе, получим:

=- J/>(to)costo/t/to-- J(2(to)sinto/fifto.
71 о 71 о

Откуда

- J/>(to)costo/t/to =i jQ(to)sinto/flfto.
71 о 71 о

Подставив полученное равенство в выражение (4.26), получим:

2
k(t) =- |/,(to)costo/t/to

яо
(4.27)
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или

k(t) = — jQ(to)sin со/ dw.
no

(4.28)

Найдем далее связь между переходной функцией h(t) и частотны¬
ми характеристиками системы. Так как

t

h(t)=\k(t)dt,
О

то, подставив (4.27) в это выражение и меняя порядок интегрирова¬
ния, получим:

' 2°° 2°° /

/?(/) = J - JP(co)cosco/flfco dt=- J/>(со) Jcosco/c// d(a,

of*о J 71 о о

, / \ 2 г _/ ч sin а)/1
flfcO. (4.29)

Таким образом, выражения (4.27), (4.28) и (4.29) определяют
связь между временными и частотными характеристиками системы.

Ранее для систем с дробно-рациональными передаточными фун¬
кциями было доказано, что ЧХ при отрицательных частотах явля¬
ются комплексно сопряженными ЧХ при положительных частотах.
Используя (4.24), докажем этот факт в общем случае.

Подставив в (4.24), получим:

W (усо) = \k(t)(cosсо/ + /sin о)t)dt = jk (/)cos оэtdt + jfk(t)sin со/ dt.
0 0 0

Изменим знак со. Учитывая четность функции cos со/ и нечетность
sin со/, получим:

W (—/со) = (/)(cos со/-/sin соt)dt = (/)cosсо/ dt- jJfc (/)sin со/ dt,
0 0 0

что и требовалось доказать.
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Глава 5. СТРУКТУРНЫЕ СХЕМЫ И ПЕРЕДАТОЧНЫЕ

ФУНКЦИИ ОДНОСВЯЗНЫХ, ЛИНЕЙНЫХ,

НЕПРЕРЫВНЫХ СИСТЕМ АВТОМАТИЧЕСКОГО

УПРАВЛЕНИЯ

5Л. Структурные схемы и звенья динамических систем

В отличие от функциональных схем (см. гл. 2), которые поясняют
принцип действия систем автоматического регулирования, струк¬
турные схемы дают представление о характере преобразования сиг¬
налов в системах как при статических (установившихся), так и при
динамических (неустановившихся или переходных) процессах [1,31,
32, 33, 34]. На основании структурных схем можно выполнить ма¬
тематическое описание процессов, протекающих в системе, и оце¬
нить ее основные свойства: устойчивость и качество регулирования.
Структурные схемы позволяют графически изобразить взаимодей¬
ствия, имеющиеся в сложных системах, что упрощает их исследова¬
ние.

Структурной называют такую схему, в которой каждой матема¬
тической операции преобразования сигнала соответствует определен¬
ное динамическое звено.

В отличие от элемента функциональной схемы динамическое
звено не обязательно должно быть конструктивно обособленным
устройством. Такими звеньями могут быть отдельные части элемен¬
тов и объектов регулирования — обмотки возбуждения или якоря
электрических машин, обмотки трансформаторов и т.п. Иногда мо¬
гут вводиться динамические звенья, не связанные непосредствен¬
но с функциональными элементами, а лишь характеризующие ма¬
тематические зависимости между некоторыми координатами.

Если изменение входной координаты х звена приводит к измене¬
нию его выходной координаты у, а изменение у никак не сказывает¬
ся на величине х, то такое звено называют звеном направленного
действия. Свойство направленности обычно возникает при усиле-
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нии входного сигнала по мощности. Пассивные звенья (рычаг, зуб¬

чатая передача, цепочки г, L, с и т.д.) свойством направленного дей¬
ствия не обладают.

Процесс преобразования сигналов в любой системе может быть
описан с помощью передаточных функций W(p), частотных Ж(/о))
или импульсных k{t) характеристик. Поэтому считают, что каждо¬
му звену соответствуют определенные W(p), Щ/со) или k(t). Удобно
с некоторыми приближениями свести всю совокупность динами¬
ческих звеньев к ряду типовых, динамические свойства которых,
выражаемые с помощью W(p), 1Р[/'ш) и k(t), хорошо изучены.

Используя структурную схему системы, можно определить для
нее W{p), W{jiо) или k(t), исходя из соответствующих характерис¬
тик отдельных, входящих в эту схему динамических звеньев.

Динамические звенья подразделяют на три основных типа: по¬
зиционные, интегрирующие и дифференцирующие. Кроме того,
различают неминимально-фазовые, неустойчивые и трансценден¬

тные звенья, а также корректирующие, применяемые для улучше¬
ния динамических свойств САР. Подробное рассмотрение харак¬
теристик звеньев начнем с позиционных, к которым относятся бе¬
зынерционное звено и инерционные звенья 1-го и 2-го порядков.

Безынерционное (усилительное) звено. Это звено описывают урав¬
нением первого порядка:

Atf = BQX, или у= кх, (5.1)

где к = BQ/AQ — коэффициент усиления.

Примерами таких звеньев являются потенциометры, усилители,
рычажные и зубчатые передачи. Передаточная функция звена

у(р)
W(p) = (5.2)= к.

х(р)

Его частотные характеристики (рис. 5.1, а—г):

Ж(/(о) = к\ Д(ю) = к\ ф((о) = 0; Доз) = 20 lgк.
Переходная функция (см. рис. 5.1, д) имеет вид:

h{t) = k\{t).

(5.3)

(5.4)
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Рис. 5.1. Частотные (а—г) и временные (д, е) характеристики безынерционного
усилительного звена

Импульсная (весовая) характеристика (см. рис. 5.1, е):

k(t) = k8(t). (5.5)

На основе выполненного анализа частотных характеристик
безынерционного звена можно сформулировать следующее фи¬
зически очевидное утверждение: если амплитудно-частотная ха¬
рактеристика системы является прямой, параллельной оси частот и
отстоящей от нее на величину к, а ср(со) = 0, то форма сигнала на выхо¬
де системы повторяет форму сигнала на ее входе и отличается только
масштабом, определяемым коэффициентом усиления к.

В действительности безынерционных звеньев не существует, и та¬
кими звеньями считают те, у которых постоянная времени на один-
два порядка ниже, чем у других звеньев системы.

Инерционное (апериодическое) звено 1-го порядка. Это звено опи¬
сывают уравнением вида

dy dy
А—+Лпу = В х или Т — + у = кх,

1 dt и и dt
(5.6)

где Т= А\/Ац — постоянная времени;

к = В0/А0 — коэффициент усиления.
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Применив преобразование Лапласа при нулевых начальных ус¬
ловиях, получим операторное уравнение звена в виде

(Тр+1)у(р) = кх(р). (5.7)

Откуда передаточная функция

у(р) к
х(р)

'W(p) (5.8)

Примеры такого звена — контуры гс или Lr (рис. 5.2). Составим
уравнение для контура гс на основе второго закона Кирхгофа:

П'М +"выхМ = ИвхМ- (5.9)

Здесь i(p) — ток, протекающий через емкость, при этом считают,
что из-за высокого значения входного сопротивления следующего зве¬
на, выходной ток /вых предыдущего звена мал и им можно пренебречь.

б*вых *'выха i iLг
Jÿrÿr\{ 1

ва“ гаа а

о

Рис. 5.2. Инерционные звенья первого порядка:
а — контур гс; б — контур rL

и (р)_ выхТогда /(/?) (/?) и уравнение (5.9) примет вид:= сри
1/ср вых

(1+ гср) пвых (/?) = пвх (р) , что соответствует уравнению инерционного

звена 1-го порядка при Т= геи к = 1.
Частотные характеристики звена (рис. 5.3, а—в) в алгебраи¬

ческой форме записи имеют вид:

*(1-ум Т) к
1+УшГ“(1+уюГ)(1-усоГ)_1+г2<о2 Л + Г2®2’

W<jtо) =-4
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Рис. 5.3. Частотные (а—ж) и временные характеристики (з, и) инерционного
звена 1-го порядка:

1— при Т= 7j; 2— при Т=2ТХ\ 3— при Т= 47j
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ОМ

ЧХ в показательной форме записи:

кюТ
(5.10)

l+rV

кТы 1 + Г2со2_|
expyarctg

1+ Г2со2 к
к

W(jn)
Vl + Гчо2

В соответствии с этими выражениями АЧХ и ФЧХ можно записать
в виде:

к
Л(ю) = ; ср(со) = -arctgcoT". (5.11)

Jl +(шТ)2’
АФХ рассматриваемого звена можно построить по выражениям

(5.10) или (5.11), задаваясь значениями частоты и вычисляя соответ¬
ствующие характеристики. Кроме того, для данного звена на основе
(5.10) можно получить зависимость P(Q), исключив частоту со. Дей¬
ствительно

к2 к2Т2ю2 к2
P2+Q2 = (5.12)

1+TV(l + r2co2)2 (l + r2co2)2
Учитывая выражение (5.10) для Дсо), запишем правую часть для

(5.12) в виде

к 2

= кР.
1+ 7т2со2

Тогда

P2+Q2 (5.13)
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Полученное уравнение представляет собой уравнение окружно¬
сти радиуса 0,5/:, центр которой расположен на расстоянии 0,5/: от
начала координат. Отметим также, что это выражение не зависит
от постоянной времени Г, и, следовательно, положение АФХ не
будет изменяться при изменении Г. Вместе с тем выражения для
Р(со), Q{со), Л(со) и ф(со) содержат Т, и, следовательно, вид этих ха¬
рактеристик будет изменяться при изменении Г (см. рис. 5.3).

Таким образом, амплитудно-фазовой характеристикой этого зве¬
на (см. рис. 5.3, а) является полуокружность с диаметром, равным
коэффициенту усиления к, расположенная при со > 0 в квадранте
IV, а при со < 0 — в квадранте I. Вектор 1К(/со) при со = 0 лежит на
положительной вещественной полуоси, и при возрастании со угол
(р(оо) < 0. Так, при со = 1/Г, имеем ф(1) = -45°.

Из АЧХ звена (см. рис. 5.3, б) видно, что колебания с частотой
со < Г-1 звено пропускает без существенного снижения их амплиту¬
ды (0,71 наибольшего значения). Колебания с частотами со > Г
звено сильно ослабляет — подавляет. Считают, что звено имеет по¬
лосу пропускания Дсо = 2/ Г.

Логарифмическая амплитудная частотная характеристика (см.
рис. 5.3, с, штриховая линия) имеет вид:

L (со) = 20 lg А (со) = 20 lgк-20 lg д/1+(сог7.

-1

(5.14)

Практически здесь применяют линейную аппроксимацию с по¬
мощью асимптотических ЛАЧХ Ьа{со) (сплошная ломаная линия).
При этом исходят из следующих допущений.

сп, где сосп = 1/Г — сопрягающая
частота) пренебрегают членом (соГ)2 во втором слагаемом выра¬
жения (5.14), тогда Ьа(со) = 201gк. На рис. 5.3, е этому уравнению
соответствует горизонтальная прямая, отстоящая на 201gк от оси

При низких частотах (со < со

частот.
При высоких частотах (со > сосп) пренебрегают единицей в

подкоренном выражении второго слагаемого (5.14), тогда La2(u>) ~

~ 201gк - 201gco Г. График этой асимптоты — прямая с наклоном
—20 дБ/дек.

Разность между точной характеристикой Г(со) и асимптотической

La(со) представляет собой поправку 5(со) к асимптотической харак¬
теристике (см. рис. 5.3, ж). Наибольшая погрешность, примерно рав¬

но



ная —3 дБ, соответствует сопрягающей частоте оо
Точную ЛАЧХ никогда не строят, так как и при асимптотической
аппроксимации точность получается обычно достаточной.

Переходная функция звена (см. рис. 5.3, з):

когда сосп7,= 1.СП’

В)"'»= к 1-ехр (5.15)

Импульсная (весовая) характеристика (см. рис. 5.3, и):

dh(t) к В)»-k(t)1 ' dt
(5.16)=—exp

Т

Инерционное звено 2-го порядка. Это звено имеет уравнение

d2y dy
Л2 +А ~т~+А)У-Яох- (5.17)

dt2 dt

Примеры такого звена — пассивный четырехполюсник, содержа¬
щий г, Ь,и с (рис. 5.4, а), или колебательная система, состоящая из
тела массой т, пружины с жесткостью ж и гидравлического гасите¬
ля с коэффициентом затухания (3 (рис. 5.4, б).

По второму закону Кирхгофа для цепи, приведенной на рис. 5.4, а,

Lpi( р)+ п( р)+«вых ( р) = «вх ( Р)

Так как Ир) = сривых(р), то {Ьср1 +re/) + l)«Bblx (р) = ивх (р).

Это уравнение соответствует уравнению (5.17) при AQ = BQ = 1.

ба
У'

тт

L о/г О X
/YW_| [.

2 Ж

7
г а

4 7777777/77777777
Рис. 5.4. Инерционные звенья 2-го порядка:

а — электрическая rLC цепочка; б — механическая система
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Уравнение механической системы (см. рис. 5.4, б) также соответ¬
ствует уравнению (5.17):

т + (3— + жу-F(/).
dt2 dt ' W

Введем следующие обозначения: коэффициент усиления к = BQ/AQ\

постоянные времени Т2 = у/А2 / А0 ; 7] = yU, / Д) и Т = / Л0 = у]т$;

коэффициент относительного затухания (относительное демпфи¬

рование) п = А] /(2у[Ая/~Аяу, собственная частота колебаний не¬

демпфированного звена (звена без затухания) шс = JAQ/ÿÿ . С уче¬

том этих обозначений уравнение (5.17) можно записать в виде:
дифференциальный операторный

(r2V + 7]/> +1)у ( р) = кх ( р);

(г2/?2 + 2я7/? +1)у(/?) = &х(/?);

+ 2«wcÿ-+ co2y = А:со2л:; [яр2 +2nwcp + uÿy(p) = kvÿx(p). (5.20)

Для уравнения (5.18) характеристическое уравнение

Г2У +7J /7 +1 = 0.

(5.18)

(5.19)

dt2

(5.21)

Оно имеет корни

_-Г|±7712-4Г22
2Г22

Соответственно для уравнения (5.20) характеристическое уравне-

(5.22)А,2

ние

р2 + 2ш>с/? + 0)2 = 0 (5.23)
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имеет корни

Р\,2 = -«юс ±

Если в (5.24) обозначить степень затухания колебаний а = ишс
и вынести coj из-под знака радикала, получим:

д2=-а±усосв,

(5.24)

(5.25)

VI-г? — собственная частота затухающих колебаний, т.е. соб-где шсв = шс
ственная частота колебаний демпфированного звена (звена с затуханием).

Обычно п « 1 и принимают сосв « со
В зависимости от вида корней характеристических уравнений

(5.22) и (5.24) инерционное звено 2-го порядка при 7я > 2Г2 или п > 1
представляет собой апериодическое звено, при Г| < 2Г2 и я < 1 —
колебательное, а при Т\ = 0 или п = 0 — консервативное.

Апериодическое звено 2-го порядка. Это звено имеет следующую
передаточную функцию, определяемую на основе уравнения (5.18):

с

к
W(p) (5.26)

Г2У + 7]р+1

Корни характеристического уравнения (5.22) этого звена ве¬
щественные, поэтому их можно представить в виде /7я = —1/ 7я и

Р2 = —1/7"4. Тогда, разложив полином N(p) знаменателя переда¬

точной функции по корням, получим:

/1,{Р) = Т2{Р-Р1){Р-Р2)=-яГ(Т}Р+1){Т4Р+1)-

Поэтому

к*

W{p) (5.27)
{Т)Р+1)()’

где к* = кТяТя / Tj — новое значение коэффициента усиления.

Из выражений (5.8) и (5.27) видно, что апериодическое звено 2-го
порядка можно представить как два апериодических звена 1-го по-
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Рис. 5.5. Частотные (а—г) и временные (д, е) характеристики апериодического
звена 2-го порядка

рядка. Частотные характеристики такого звена (рис. 5.5, а—в) опи¬
сываются уравнениями:

/с*к
W(усо) = (5.28)

1-со2Г22 + /со7J (1+ усоГ3)(1+ усо Т4 )
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к*
АН (5.29)

+ (о2Гз2).(и-ш27’42)’

Ф(со) = -arctgсо Г3-arctgсо7\.

Логарифмическая амплитудная частотная характеристика

(5.30)

7(co) = 201g&*-20 lg yj\ -со2Г32 -20 lg yj1-со2742 (5.31)

имеет две сопрягающие частоты сосп1 = 1/Т3 и сосп2 = 1/7я.
График Дсо) можно аппроксимировать ломаной линией (см.

рис. 5.5, г), состоящей из следующих отрезков: горизонтальной
прямой, отстоящей от оси абсцисс на 201gк* (на участке от со = 0
до со = сосп1), прямой с наклоном —20 дБ/дек (от сосп1 до сосп2) и
прямой с наклоном -40 дБ/дек (при со > сосп2).

Переходная функция апериодического звена 2-го порядка (см.
рис. 5.5, <я) имеет вид:

t t
h(t) = k* 1 exp --l(/). (5.32)exp +

Г3-Г4
Импульсная (весовая) характеристика (см. рис. 5.5, е) определя¬

ется уравнением

Т3) ТЪ-ТА Т4

к* t г
k(t) = exp ---exp --1(7). (5.33)

ТЪ-ТА
Колебательное звено. Это звено имеет передаточную функцию,

определяемую по уравнению (5.19):

Т4

к
W{p) = (5.34)

Т2р2 + 2пТр + \

Частотные характеристики (рис. 5.6, а—в) описываются выраже¬
ниями:

к
W ( у'со) = (5.35)

1-со2Г2 + у'2жоГ
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к
Л(о)) = (5.36)к1-(02Г2)2 + (2яй)7’)2

2жоГ
cp(w) = -arctg (5.37)

1 -а2Т2 '

Годограф АФХ пересекает мнимую ось на частоте сосп = 1/Г, при
этом

w у(»сп=я) =
к .к_

j-2n~ J
2п

Амплитудная частотная характеристика имеет максимум при ре¬

зонансной частоте сор = сос yjl- 2п2 , причем

Логарифмическая амплитудная частотная характеристика

co) = 201gA:-201gj(l |2 +(2яш Т)2 .-ю27’2 (5.38)

В пределах значений коэффициента относительного затухания
0,4 < п < 0,7 (рис. 5.6, г) ЛАЧХ можно аппроксимировать зависимос-

rfl(o)) = 201g£-401gcor.

Вне этого диапазона значений п линейная аппроксимация дает
большие погрешности (более 3дБ) и неприемлема; необходимо стро¬
ить точное значение ЛАЧХ [1], для чего можно воспользоваться кри¬
вой поправок АГ(со) (см. рис. 5.6, д). При этом L(со) = Гд(со) +АГ(со).

Временные характеристики колебательного звена (см. рис. 5.6, е
и ж) определяются уравнениями:

тью

1
е м sin(coCB/ + ср) 1(/)h(t) = k 1- (5.39)

Vl -п2
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(Dc .
——e p/ sinwk(t) = k (5.40)
WCB

где

\l\-n2

(5.41)cp = arctg
n

Консервативное звено. Это — частный случай колебательного звена
при п = 0, что соответствует отсутствию рассеяния энергии в звене.
Частотные характеристики такого звена имеют разрыв при (ос = 1/Г,
а временные представляют собой незатухающие колебания с угло¬
вой частотой сос.

Звенья интегрирующего и дифференцирующего типа. Характерис¬
тики звеньев интегрирующего (интегрирующего, интегрирующего

с замедлением и изодромного) и дифференцирующего (дифферен¬
цирующего, дифференцирующего с замедлением и интегродиффе-
ренцирующего) типов приведены в табл. 5.1.

Часто эти звенья дополнительно вводят в состав САУ для при¬
дания ей определенных динамических свойств, или, как еще гово¬
рят, для коррекции системы. Такие корректирующие звенья могут
по-разному вводиться в структурную схему САУ. Кроме рассмот¬
ренных звеньев к корректирующим относится еще целый ряд зве¬
ньев. Достаточно подробная таблица корректирующих звеньев бу¬
дет приведена во второй части учебника.

Неминимально-фазовые звенья. Пусть передаточная функция си¬
стемы представляет собой отношение двух полиномов. Система яв¬
ляется устойчивой, когда корни характеристического полинома
N{p) (полюса передаточной функции) лежат в левой полуплоскос¬
ти (см. главу 3, п. 3.3). Кроме того, динамические свойства систе¬
мы зависят от того, как расположены нули системы, т.е. корни по¬
линома М{р).

Если все нули передаточной функции устойчивой системы нахо¬
дятся в левой полуплоскости, то систему называют минимально-фа¬
зовой. В противном случае — неминимально-фазовой.

Известно, что для минимально-фазовых систем существуют сле¬
дующие зависимости:
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Таблица 5.1

Характеристика

логарифми¬
ческая ам¬
плитудная
частотная

Передаточ¬
ная функция

Звено Уравнение звена фазовая час¬
тотная

переходной

функции
амплитудная

частотная
частотная

62 3 4 5 7 81
IИнтег¬

рирую¬
щее

ау dy
А, — = В0х', — = кх\

ф А ф(ю) = -90°dt dx А п
JQ" ЛиL 1 k 7(со)=—201g(o Т Л(/)=4,1(/)

1 'г 4Р Тр
АЫ~ят

о

-я о -яУ р

\:
о

со

АФХ
0А> -901 0 -я

л=—- t(О

Т А,

d2y Ш)=-20Ы-201gto -
- 20IgJl+aTФ A(/)=A:[f — Г(1 — е г)]хАЛ ср(со) = -90° — arctgco 7 J4 dt1+A dt”80*Интег¬

рирую¬
щее с
замед¬
лением

W(j(o)= А х1(0АпУсо(1+у'со7) к
Л(со)= 7мcoYl+coY,т АУОк!ТиЛ=кх: к

Щр) = оч

0

dt2 /*1+7» о -ясоdt -90
со =1

СП у
СО

0ЛФХ ->я -180

= Г =-яА, СО Т Г

А А,

Изо-
дром-

dy dx 7(co)=-201gA' - 201gco +

+ 201g>/l+co“r
к cp(co)=—90° — arctgco TЛ ~ ВоХ + В{ ,

dt
W(p) =-+ kx\ _к{1 +Ао 7', ) лАА(1)ав(Л/+*1)1М/Idt Ия/со) A{(d)=—J\ +со Т

со

: Фп/> УС? и

ф госное *0 +7».— -кх + к, — ; Иф) = оI
dt ’ п"\яЮсп г,

и
, 20lgX

dt к СОр 00
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Окончание табл. 5.1NJ
о

62 3 4 5 7 8

Диффе- ах jQn W(j(0)=jwT ф 1 к ф(со)=90°АП А((о)=(аТ L Z,(co)=201gco Т
АУ = В,-;

СОренци-
рующее -90 0 при/*0

оо при / = Оt-оW(p) = Тр W)о -яах В АФХ
1 ©

У = т—; Т =-± о-я (0см=яг
dr 4 со(Ор

_ ju>k
1 +/со Т

dy dx HWЛ— +A>y = Bi—;
dt

JQk ф(со)=90° — arctgco TДиффе- А:со Li L гdt Ж<о)=
7l+co2r h{t)—keT1(/)Ф *

~kir я

L(co)=—201g£- 201g
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лkpdy dx 90
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k = —\ T =-t
4 Л
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+201g Jl +m2 Г,2 —
ф(со)= arctgco Г,
—arctgco T2

A— + A0y=Bax+Bt—-;
dt /cjl+w2r,2k(\+j(oTx)dt AW(ju)= A(<o)=1+до T2

to*ZZTl>T2 Jl+coV2 ki[Л(1+T\P)T&>-*ÿ+x> r,>r2 — 201g Д +coV
0- у-—*

И4/>) =

"СК г,<7;
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'(о=0

ш о
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I"да*
n J и-О)

pи
—oo

/ ч 1 гя(и)
0(ю) = — Г-я-Лй/;

71 J М-О)

, ч i
ф(ю) =- J

—oo

л
In ctg — clX

dX

L(X) = \nA(X),X = \n-;
CO

и — переменная интегрирования;
A(X) — АЧХ системы при и = X, а интегралы понимаются в смысле своих

главных значений.

Из приведенных зависимостей следует, что ЧХ минимально-фа¬
зовой системы полностью определяется заданием ее вещественной

Р((.о) или мнимой Q(w) частей или Л(оо). Кроме того, из этих соотно¬
шений также следует, что в минимально-фазовых системах нельзя
изменять АЧХ так, чтобы ФЧХ оставалась неизменной.

Для неминимально-фазовых систем приведенные соотношения
не выполняются и, кроме того, сдвиг по фазе между входными и
выходными сигналами может превышать л/2. В качестве примера
неминимально-фазовой системы рассмотрим устойчивое немини¬
мально-фазовое звено первого порядка. Дифференциальное уравнение

этого звена имеет вид:

где

dx\dy
7] — + у = k X-TQ — . (5.42)

dt dt

Передаточная функция такого звена

*(1-7оР)
(5.43)W(p)

7]/7 + 1
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и частотная характеристика имеет вид:

*(1-Уй)Го)_/[~1-Г0Г1Ю2
1+ у0)7]

71 + ТоW(jm) = -М (5.44)
1+ 7]2ог

Такое звено соответствует мостовым схемам, приведенным на
рис. 5.7, а и б.

Работа этих схем может быть описана следующими уравнениями:

1+ 7’,2со2

du2 + и2=щ-г0с•для схемы а: гс
dt ’dt

du2 бщ
•для схемы 5: Г|Г2с + т2=г0щ-г1г2с

dt ’dt

где г = rj + г2; /о = г2 -rj; г2 > /*) .

Для схемы я: & = 1; Г0 = г0с; 7] = гс; т = Г0 /7] < 1.

-Зяс; т = Г0/71>1.
Й +г2

По выражению (5.43) для передаточной функции рассматривае¬
мого звена найдем ее полюса и нули. Приравняв к нулю характери¬
стический полином звена, получим характеристическое уравнение

Тяр +1 = 0, откуда полюс звена равен: = —1/7я, следовательно,
звено устойчиво. Приравняв к нулю полином числителя (5.43), по¬
лучим TQP —1=0, откуда ноль звена равен = +1/7ф следователь¬
но, звено является неминимально-фазовым.

Для схемы б: к = — <1; Т0 =
п-ъ

cl 7] =
г

5а

3=
I с_1_

Гг г\ Г2

Г\ з
“2(У] =Г Оа"

г\Г2 г2Тс илI
Рис. 5.7. Электрические схемы устойчивых неминимально-фазовых звеньев
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Амлитудно-фазовые характеристики этого звена (рис. 5.8) имеют
вид полуокружностей и расположены в третьем и четвертом квад¬
рантах. На этом рисунке приведены нормированные АФХ:

1
W0(jQ) =-W(jcо), = со 7]. (5.45)

Амплитудная частотная характеристика этого звена совпадает с
АЧХ интегро-дифференцирующего звена:

1
Pl=7F’Pi,2=±Jÿс> гДе т = 7Ь/7] . (5.46)

Также одинаковыми будут и их логарифмические амплитудные
частотные характеристики.

ба
Q Q

X > 1

П = со —т Q = оо 1—X

Ь = о/3 П = 0РЛ о,
00

о

n=i| пQ
О00

в г

Ф Ф

О О
Q Q

-90 -90

-180 -180

\-270 -270

Рис. 5.8. Частотные характеристики неминимально-фазового звена:
а и в — соответственно амплитудно-фазовая и фазовая при х < 1;

би г — то же при х > 1
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ФЧХ этого звена определяется выражением:

-arctg Г0ш-arctg 7]о)

- 0,5л;

—п-arctg Г0ш-arctg 7]со при w > ( ТфГх )-0,5 .

при со<(Го7]) 0,5
;

при co = (7J)7| ) 0,5
; (5 47)ф(со) = <

Графики этой характеристики в функции нормированной часто¬
ты = (0 7я приведены на рис. 5.8 также для двух значений т. Эти
графики существенно отличаются от ФЧХ минимально-фазового
звена (интегро-дифференцирующего).

Таким образом, при совпадении АЧХминимально-фазовых и немини¬
мально-фазовых звеньев их ФЧХне совпадают, с ростом частоты они не

|<р(~)|я|.Этустремятся к нулю, а достигают значительных величин

особенностьнеминимально-фазовых звеньевнеобходимо иметьв виду
при определении ФЧХ по известной АЧХ.

Временными характеристиками звена являются:

t

h(t) = k 1— (1+ т)е Т{ 1(f);

(5.48)

1+Те~тП(,).k[t) = -kzS[t)+
ТХ

Графики этих характеристик приведены на рис. 5.9. Из этих гра¬
фиков видно, что в отличие от аналогичных характеристик мини¬
мально-фазовых звеньев, h(t) меняет знак. Кроме того, величина
т не оказывает существенного влияния на вид временных харак¬
теристик.

Неустойчивые звенья. В главе 4, п. 4.1 было введено понятие час¬
тотных характеристик как на физическом, так и на математическом
уровне. При этом считалось, что при гармоническом входном сиг¬
нале переходные процессы в системе затухают, и на выходе линей¬
ной системы в установившемся режиме гармонический сигнал име¬
ет ту же частоту, что и на входе. Сигналы на входе и выходе отлича-
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ба
ТхИ

АЦ

к к(1+х)[
ТI

И

I
\

\о
t ио t

-кт.[

Рис. 5.9. Временные характеристики неминимально-фазового звена:
а — переходная функция; б — импульсная характеристика

ются по амплитуде и имеют различные фазы. Эти рассуждения спра¬
ведливы для физически реализуемых устойчивых систем. Напомним,
что полюса передаточной функции этих систем лежат в левой полу¬
плоскости.

Для идеального интегрирующего звена при гармоническом сиг¬
нале на входе имеем гармонический сигнал на выходе (см. п. 4.1,
пример 4.1). Следовательно, несмотря на то что полюс передаточ¬
ной функции интегрирующего звена находится в точке начала коор¬
динат р = 0, т.е. звено нейтрально (см. главу 3, п. 3.3), понятие час¬
тотной характеристики совпадает с введенным в примере 4.1 поня¬
тием частотной характеристики интегрирующего звена.

В общем случае рассматривались физически реализуемые систе¬
мы, у которых степень полинома числителя передаточной функции
не превышает степени полинома знаменателя. К таким системам не
относится идеальное дифференцирующее звено. Вместе с тем про¬
изводная от гармонического сигнала также является гармоническим
сигналом, и понятие частотной характеристики совпадает с введен¬
ным. В примере 4.2 были построены частотные характеристики иде¬
ального дифференцирующего звена.

Неустойчивые звенья описываются дифференциальными уравне¬
ниями с отрицательными коэффициентами в правой части и, следо¬
вательно, с положительными полюсами (корнями характеристичес¬
кого полинома). Сигнал на выходе такого звена не имеет установив¬
шегося значения.
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Наиболее распространенным примером неустойчивого звена яв¬
ляется квазиинерционное звено 1-го порядка, дифференциальное
уравнение которого имеет вид:

dy
у-Т— = кх, или (5.49)

dt

dy
Т---у = кх. (5.50)

dt

Передаточная функция такого звена

W{p)=——' \-Тр

Полюс передаточной функции, получаемый из уравнения 7/? — 1=0,

W(p) = ——v ’ Тр-\
(5.51)или

1
равен Р\=— и лежит в правой полуплоскости. Следовательно, зве¬

но, описываемое этой передаточной функцией, неустойчиво.
Если на вход такого звена подать гармонический сигнал х(р) =

= x0sin toxt, имеющий изображение х(/?) = х0
Мх , то изображе-

Р +Щ
ние сигнала на выходе примет вид:

кх0<аху(р)
(7>-1)(/>2+COJ)

Для перехода к оригиналам по формуле обращения определим
корни знаменателя изображения у(р):

1
P\ = r> Pl,2=±Ju>x-

После перехода к оригиналам получаем:

t
к(пхТ L=x0sin(<oxt+<t>),

yi + coJT'2
У(') = тх0е‘ +

1+ ю2ХТ2
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где (p = arctg(coxr) и y(t)—>
t—>оо

Как следует из этого выражения, решение данного дифференци¬
ального уравнения содержит гармонический сигнал и не имеет уста¬
новившегося режима. Поэтому физическая трактовка понятия час¬
тотной характеристики, введенная ранее, не правомочна. Вместе с
тем рассмотрим несколько иной подход. Будем искать частное ре¬
шение рассматриваемых дифференциальных уравнений при

*(0=*0я (5.52)

в виде

у(0= У0

После подстановки (5.52) и (5.53), например, в (5.50) получаем:

УоГусоУя) -уое'К'+ф) =Ьо*Л'.

(5.53)

Откуда —с7ф = ———.
7/со-1

Из этого выражения формально можно записать:

Л'о

к к &7\о
-У (5.54)Г2о)2+ГГ2со2 + 17/со-1

к
АН (5.55)

ср(со) = -я+arctg (соГ).

Полученные выражения (5.54), (5.55) и (5.56) определяют соот¬
ветственно ЧХ, АЧХ и ФЧХ неустойчивой системы.

Обобщим полученный результат. После чего опять вернемся к
этому примеру.

Пусть дифференциальное уравнение, являющееся моделью сис¬
темы (требование устойчивости системы опускается), имеет вид:

(5.56)
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i=m J л, k=n

i=0 dt

Будем искать частные решения этого уравнения при входном сиг¬

нале x(t) = xQeja>xt в виде у(/) = у0е-/((О*?+<р) . Подставив эти функции

в (5.57), получим:

dkx
(5.57)

dtk'к=о

Т(/К'+ф)ZЛ (Усо/ = Z Вк (*>)*•

/=0 к=1

Откуда

I%(я/»)*
Zo еУ'ф _ /с=1 (5.58)
х0

/я=о

Из этого выражения формально можно записать:

(усо) = eJ(p = W (р = усо) = Р(со) + уQ(ю). (5.59)
*о

Следовательно, с математической точки зрения частотные харак¬
теристики в общем случае можно получить из передаточной функ¬
ции системы после замены р нау'со.

Сравнив (5.55) с (5.11), видим, что АЧХ устойчивого и неустой¬
чивого звена, описываемого дифференциальными уравнениями
первого порядка, не отличаются. В то же время ФЧХ неустойчиво¬
го звена 1-го порядка при изменении со от 0 до в отличие от ус-

— . Таким об-тойчивого звена 1-го порядка, изменяется от —я до --
разом, и в случае неустойчивых линейных звеньев правомочен об¬
щий подход построения частотных характеристик.

Частотные характеристики неустойчивого звена первого поряд¬
ка приведены на рис. 5.10. Как видно из рис. 5.10, а при ш = 0, W(j0) =
= —к (что следует и из (5.54)) и АФХ начинается из точки, лежащей
на отрицательной вещественной полуоси, т.е. в третьем квадранте.
При увеличении со, вектор ЧХ вращается против часовой стрелки и
описывает полуокружность. Таким образом, АФХ неустойчивого
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звена является зеркальным отображением АФХ типового инерци¬
онного звена относительно мнимой оси. Пунктирной линией на
этом рисунке показана АФХ неустойчивого звена первого порядка
при изменении со от 0 до —«>.

АЧХ и ЛАЧХ имеют такие же выражения, как и для инерционно¬
го звена I порядка:

-- = 20lg*-201gÿ/l + (to Г)2Л(со) =
VI +(шГ)

поэтому графики этих характеристик для неустойчивого звена ни¬
чем не отличаются от аналогичных графиков типового инерцион¬

ного звена 1-го порядка.
Вместе с тем ФЧХ неустойчивого звена существенно отличает¬

ся от ФЧХ устойчивого. График этой характеристики (рис. 5.10, б),
построенный по формуле (5.56), представляет собой зеркальное ото¬
бражение ФЧХ устойчивого инерционного звена относительно пря¬
мой ср = —п/2.

Такие же выводы относительно вида АЧХ и ФЧХ можно сделать
и для других вариантов неустойчивых звеньев.

Временные характеристики рассматриваемого звена определя¬
ются следующими формулами:

t

h(t) = k ет -1 1(/); (5.60)

1

*(')=f«r1(0. (5.61)

-СО

__
Ж(/'со)

ба s-
N Ф\/

\/
\ -90! к о

со = СО (О -180
со = 0 -270

0со
00

Рис. 5.10. Амплитудно-фазовая (а) и фазовая частотная характеристики (б)
неустойчивого квазиинерционного звена 1-го порядка
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б Эти выражения, а также
их графики (рис. 5.11) сви¬
детельствуют о том, что для
неустойчивых звеньев не су¬
ществует установившегося
режима работы. С течением
времени при любом значении
воздействия реакция таких
звеньев неограниченно возра¬
стает.

а

h(tГ k(t)

к
О

t О t

Рис. 5.11. Временные характеристики не¬
устойчивого квазиинерционного звена 1-го

порядка:
а — переходная функция; б — импульсная

характеристика
Трансцендентные звенья.

К ним относятся звенья, опи¬
сываемые трансцендентными уравнениями. Простейшим приме¬
ром таких звеньев является звено запаздывания, у которого реак¬
ция изменяется с отставанием на определенную постоянную вели¬
чину от воздействия. Так, например, если воздействием является
скачкообразный сигнал x(t) = х01(Д, а реакция звена определяется
выражением y{t) = 1(/ — т), то такое звено является звеном запаз¬
дывания.

Явление запаздывания возникает, например, в системах переда¬
чи информации по линиям связи, при передаче кинематического
возмущения через колесные пары подвижного состава и т.п.

Для определения передаточной функции звена запаздывания за¬
пишем приведенные выражения воздействия и реакции в оператор¬
ной форме:

Р Р
Тогда

(5.62)

и ЧХ определится выражением

W (усо) = e~jan.

АФХ такого звена представляет собой окружность единичного
радиуса с центром в начале координат (рис. 5.12). Окружность пере¬
секает вещественную ось в точке +1 при со = 2пп/т и в точке —1 при

(5.63)
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to = n(2n + 1)/т, где n =
=0,1, — Амплитудная и фа¬

зовая частотные характери¬
стики определяются следу¬
ющими соотношениями:

Ж(/ю) п

1

А(оо) = 1 и 0 (ОТ 2пк ю
„ 7г(2/7+1)
со —- (0= —

ф((0) (5.64)= -0)1. о
(О

Из (5.64) следует, что
АЧХ рассмотренной сис¬
темы не зависит от часто¬
ты, а ФЧХ системы — ли¬
нейная функция частоты.
Причем tg а = т, где т — время запаздывания. Следовательно, если
АЧХ системы не зависит от частоты, а ФЧХ системы — линейная
функция частоты, сигнал на выходе системы повторяет форму сиг¬
нала на ее входе, при этом выходной сигнал отличается только масш¬
табом, определяемым коэффициентом усиления к и запаздывани¬
ем на величину т.

Временные характеристики определяются выражениями:

00

Рис. 5.12. Амплитудно-фазовая характерис¬
тика звена запаздывания

/?(/) =1(?-т); /ф) =8(/-т). (5.65)

Звено запаздывания является неминимально-фазовым, устойчи¬
вым звеном. Оно играет особую роль при рассмотрении импульсных
систем.

В системах связи, когда величина запаздывания несущественна,
используют следующую терминологию:

• если АЧХ не зависит от частоты, а ФЧХ является линейной
функцией частоты (в том числе ср(со) = 0), то в системе не происходит
линейных искажений сигнала; зависимость АЧХ от частоты и не¬
линейность ФЧХ определяют линейные искажения сигнала;

•если АЧХ не зависит от частоты, а ФЧХ нелинейно зависит от
частоты, то искажения называют фазовыми;

•если АЧХ зависит от частоты, а ФЧХ — линейная функция час¬
тоты, то искажения называют амплитудными.

В инерционных системах в общем случае имеют место оба вида
искажений сигнала.
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5.2. Правила изображения и преобразования
структурных схем

В системах автоматического управления можно встретить различ¬
ные соединения динамических звеньев 1 1], которым соответствуют
определенные уравнения и структурные схемы. Графические обозна¬
чения, принятые в этих системах, приведены на рис. 5.13. Каждую
структурную схему можно заменить эквивалентным звеном с переда¬

точной функцией W3(p), т.е. одним звеном, которое по своимдинами¬
ческим свойствам соответствует рассматриваемой схеме. Основные
правила изображения структурных схем и их преобразования приве¬
дены в табл. 5.2.

В этой таблице п. 1 соответствует случаю, когда выходная коорди¬
ната у зависит от суммы двух входных координат и х2, а п. 2 —
случаю, когда входные сигналы х± и х2 суммируются после преобра¬

зования в звеньях W\{p) и W2(p). При параллельном соединении зве¬
ньев (п. 3) один и тот же сигнал х поступает на вход каждого из них,
а выходные координаты суммируются. Поэтому такую схему соеди¬
нения звеньев можно описать следующим выражением:

у(р) = Щ(р)х(р)+ Щ(р)х(р)+... = х(р)я1Г/(р).
i=1

Отсюда эквивалентная передаточная функция для схемы парал¬
лельно-включенных звеньев равна:

у(р) VIЩр\Щр)
Ф) /=1

б га в

+
X,

+

*3 Х\ + Х2 ~ Х3

Рис. 5.13. Графические изображения звена (а), узла разветвления (б)
и устройств сравнения (в, г)
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Таблица 5.2

Эквивалентная пе¬
редаточная функ¬
ция динамической

системы

№ Уравнение динами¬
ческой системы

Графическое изображение

системып/п

X,

y(p)= W{p)\ÿxx(p)+

+*2(/>)]
X +х2 У1 W

*2

Л,

Уy(p)=Wx(p)xl(p)+

+W2{p)-X2(p)
2

*2

IV,

y(p)= x{p)YWj(j))
/=1

(P) = twi(P)
/=1

У3

К

y(p) = x(p)Y\\Vi(p)4
i=l 1=1

.у
y{p) = W(p)\ÿx{p)±

±т(д)]
W(p)

W3(p) =5 + 1+ W(p)

— ж,
y(j>) = Wx(j})]ÿx(j))±

±W2{p)(y)p]
Щ(Р)

L =6 +

Ж2
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При последовательном соединении звеньев (п. 4) на вход каждо¬
го последующего звена поступает выходная координата предыдуще¬
го. Поэтому такая схема соответствует уравнениям:

х\(р)= Щр)х{р)\ x2(p)= W2(p)x1(p) = IV2(

y{p) = wn(p)xn-\(p) = wn{p)-wl(p)w\{p)x{p) = x{p)i\wi{p)-
1=1

Откуда эквивалентная передаточная функция для схемы после¬
довательно включенных звеньев равна:

м=т(р)-Щр)=
х(р) М

Включению обратной связи при наличии в этой цепи звена с еди¬
ничной передаточной функцией соответствует п. 5, а при наличии
звена с передаточной функцией W2{p) — п. 6. Знак плюс в уравнени¬
ях относится к положительной обратной связи (соответствует уси¬

лению входного сигнала), а знак минус — к отрицательной. В фор¬
мулах передаточной функции эквивалентного звена эти знаки ме¬
няются на обратные. Выведем для примера формулу эквивалентной
передаточной функции для п. 6. Уравнение, описывающее эту схе¬
му, запишем в виде

y(p)= Wl(p)[x{p)±W2(p)y(p)\.

Перенеся в этом выражении слагаемые с у(р) в левую часть, запи¬
шем:

y(p)[\±Wl{p)W2(p)\ = Wx(p)x(p).

Отсюда эквивалентная передаточная функция звена, охваченно¬
го обратной связью, будет равна:

у(р) Щр)
W3(p)=

х{р) 1 ±Щ(р
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Из этой формулы легко перейти к формуле п. 5.
Определение эквивалентной передаточной функции сложных ли¬

нейных систем значительно облегчается после предварительных пре¬
образований структурной схемы. Правила таких преобразований,
заключающихся в переносе звеньев, устройств сравнения и точек
разветвления, приведены в табл. 5.3. Первые три правила, определя¬
ющие преобразования устройств сравнения и перестановку звеньев,
элементарны и пояснений не требуют. При переносе точек развет¬
вления с выхода звена на его вход (п. 4) и в обратном направлении
(п. 5) следует иметь в виду, что выходная координата после точки
разветвления не должна изменяться. Поэтому в п. 4 приходится вво¬
дитьдополнительное звено с передаточной функцией W(p), а в п. 5 —

Таблица 5.3

Структурная схема№ Наименование
операциип/п Исходная Эквивалентная

2 3 41

*2 *3
Х2*4X,

*4
Преобразование

устройств срав¬
нения

*2 *4 х2*4
*5 *5X,X,

2

*з х3

х2*1 х2*1Перестановка
звеньев

W2 W23

Перенос точки
разветвления с
выхода на вход

звена

*i *2х2*1
W\ ?4

х2*г W

*i
х, х2 W

То же с входа
на выход звена

Wт5
*iх,

И
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Окончание табл.5.3

1 2 3 4

*з
Перенос устрой¬

ства сравнения с
входа на выход
звена

Wх, *з
W6

х2
*2 W

х, х3*3X, WWТо же с выхода
на вход звена

7
х2,-i

х2 W

х,Перенос точки
разветвления с
выхода на вход

устройства срав¬
нения

*з-яп *зх28
х3 *3

» I »

\ Т » 0я-
Xj

0яТо же с входа
на выход устрой¬

ства сравнения
т9 fx2

х, х2X, -I
*2Изменение мес¬

та звеньев цепей
прямой и обрат¬
ной связи

10
-Iж,

х2х,
х2Переход к еди¬

ничной обрат¬
ной связи

11
t

с передаточной функцией W~ÿ(p). Аналогично приходится посту¬
пать и при переносе устройств сравнения с входа звена на его выход
(п. 6) и в обратном направлении (п. 7).

Более сложными являются правила переноса точки разветвления
с выхода на вход элемента сравнения (п. 8) и в обратном направле¬
нии (п. 9), но эти правила также обеспечивают неизменность выход¬
ных координат после преобразований. Последние два правила (п. 10
и 1 1) вытекают из предыдущих и специальных пояснений не требуют.
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Рис. 5.14. Пример последовательного преобразования структурной схемы САР:
а — исходная структурная схема; б, в, г — этапы преобразования

Рассмотрим последовательное преобразование одной из харак¬
терных структурных схем (рис. 5.14, а), выполненное для получе¬
ния ее эквивалентной передаточной функции. Эта схема содер¬
жит главную обратную связь (ГОС), с помощью которой с выхода
системы регулирования на ее вход передается фактическое зна¬
чение регулируемой величины. Объединим точки приложения
местных обратных связей на входе и выходе звена W2(p) (см. рис.
5.14, б). При этом в цепи положительной обратной связи окажут¬

ся звенья W{~x(p) и Wÿ{p), а в цепи отрицательной связи — звенья

Щ(р)и W{\p) .
Используя данные табл. 5.2, объединим все звенья цепей обрат¬

ной связи в одно звено fV6(p) (см. рис. 5.14, в):

щ{р)=-Из"1{р)Щ{р)+ ИГ1(р)Щ(р).

Далее заменим звено W2(p), охваченное обратной связью, экви¬
валентным звеном W7(p) без обратной связи (см. рис. 5.14, г):

Щр) Щр)
Щр)=

1 +Щр)Щр Щр) Щр)
Щр) Щр)

1 +Щр
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Соответственно эквивалентная функция W%{p) всей замкнутой
системы:

Щр)Щ(р)Щр)
Шр)

1+я1(p)w1(p)wi(p)

Щр)Щр)Щр)
щ(р) Щр)
Wx{p) (р)

1+Щр) +Щ(р)Щр)Щ{р)

Такой же результат можно было бы получить и путем непосред¬
ственного преобразования системы уравнений, соответствующей
исходной структурной схеме. Однако применение метода преобра¬

зования структурных схем упрощает решение задачи и делает ее
более наглядной.

5.3. Структурные схемы, передаточные функции

и уравнения САУ

При составлении структурных схем САУ в качестве исходной ин¬
формации используют, как правило, функциональную схему. При
этом разделение функциональных элементов на звенья выполняют
так, чтобы каждому звену соответствовала простейшая передаточ¬
ная функция одного из типовых звеньев. Задающие и логические
элементы на структурных схемах не показывают [1].

Структурные схемы могут быть одно- и многоконтурные (см.
главу 2, п. 2.3). Кроме того, выделяют структурные схемы с пере¬
крещивающимися обратными связями (см. рис. 5.14). В таких си¬
стемах один из контуров обратной связи охватывает участок схе¬
мы, содержащей начало или конец другой цепи обратной связи.
Структурные схемы многоконтурных САУ и САУ с перекрещива¬
ющимися обратными связями могут быть преобразованы по пра¬
вилам (см. табл. 5.3) в схемы одноконтурных САУ с одной глав¬
ной обратной связью.

Для описания динамических свойств САУ , приведенных к од¬
ноконтурному виду, используют передаточные функции разомкну¬
той Wp(p) и замкнутой W3(p)систем, передаточные функции замк¬
нутой системы по ошибке Wÿ{p) и по возмущению Wq(p), а также
по ошибке относительно возмущения Wÿq{p).
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Передаточная функция разомкнутой САУ. Эта передаточная
функция выражается отношением преобразования Лапласа реакции
системы z(р) к преобразованию Лапласа сигнала ошибки (рассогла¬
сования) А(/?):

WAP)=Z(P)/A(P)- (5.66)

Такая формулировка соответствует тому, что при размыкании
цепи ГОС у сумматора входной координатой САУ будет ошибка А(р)
(рис. 5.15, а). Передаточная функция Wÿ{p) может быть вычислена по
структурной схеме. При этом считается, что возмущение q = 0, а САУ
после размыкания цепи ГОС состоит только из последователь¬
но соединенных звеньев, поэтому

(5.67)

1=1

где Wj(p) = Mj{p)/Nj{p) — передаточная функция каждого последовательного
звена, которую можно представить отношением двух полиномов.

Таким образом,

ЧмМ е(р)
ад=П (5.68)

Мр) е(рУ/=1

E(p) = YlMi(p) = Eo+EiP+ E2P2 +---+ Em-iP
т-1 + Етрт — полиномгде

/=1

числителя передаточной функции разомкнутой САУ;

F(p)=Ш- (р) = F0+ FlP+ Ър+яяя+ К-\РпА +РУ — полином знаме-
i=l

нателя передаточной функции разомкнутой САР.

Порядки тип этих полиномов равны сумме порядков перемно¬
жаемых полиномов Mj(p) и Njip). При этом для осуществимости си¬
стемы должно выполняться условие: п> т. Уравнение F(p) = 0 явля¬
ется характеристическим для разомкнутой САУ.

Передаточную функцию Wÿ{p) обычно записывают в стандарт¬
ной форме, когда многочлены числителя и знаменателя имеют сво¬
бодные члены, равные единице:
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к(етрт +ет-\Р .+ ехр +1)т-1
+ ..

К(р) (5.69)
•+/lP+l)PV(fnP"+f„-lPл-1

где к = EQ/FQ — коэффициент усиления разомкнутой САР.

В уравнении (5.69) ei = F-JF§ при / = О, 1,2 т;/{ = FÿFQ при

i = О, 1, 2,..., п, а величина п (порядок астатизма системы) соответ¬
ствует количеству интегрирующих звеньев, включенных последо¬
вательно. При v = 0 система статическая, при v = 1 — астатическая
1-го порядка, при v = 2 — астатическая 2-го порядка и т.д.

В установившемся режиме р —» 0 и 0) = к.
Если звеньясистемы типовые, топередаточнаяфункция приметвид:

*П(Г„р+1)
и=1Щр) (5.70)Р Y ’

р'\[{Тгр+\Щт}р2 + 2nsTsp+\)
Г=1 s=1

где а — количество звеньев интегро-дифференцирующего и дифференцирую¬
щего типов;

Р — а — количество инерционных звеньев 1-го порядка;

Y — количество колебательных звеньев.

Передаточная функция замкнутой системы. Эта передаточная
функция выражается отношением преобразования Лапласа реакции
z(р) величины к преобразованию Лапласа задающего воздействия:

W3(p) = z{p)/g(p). (5.71)

При этом принимают, что q = 0, и структурную схему, приведенную

на рис. 5.15, а, преобразовывают к виду, показанному на рис. 5.15, б,
т.е. замкнутую САР можно рассматривать как разомкнутую, охва¬
ченную главной обратной связью ГОС. Тогда передаточная функ¬
ция замкнутой САР

ад)
над)'

ад) (5.72)

140



*л>1(яй~1+*
а

хп-2
Wi Ц Wi И*

zкK-i

гос

5 в

z

t — кГОС

г
Хп-\+Я

"1
Z

*2Хп I Хп—2 X-—Ж2

а с

Z ZQК -1
0С

<?р
(1+

алс
Zк

ХП-1- Хп—2 Х2
К-, —-- - Х1

ия2 .*1 Ж,

Рис. 5.15. Структурные схемы для определения передаточных функций системы

В соответствии с выражением (5.72)

Чр) Е(р)
Щр)= (5.73)

F(p)+ E(p) Щр)"

П

/)(/?) = Е(р)+ F{p) = ХАУ — полином знаменателя передаточной фун-где

/=1

кции замкнутой САР.
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Приведем значения коэффициентов этих полиномов для разных
степеней

Степень р
/= 0;
/=1;

Коэффициенты Di
D0 = E0 + Е0’

Dl = El+Fl-

Dm = Em + Fm<i = m\
i=m+ 1; Dm+1 = E + F:m+1 m+1

Л/-1 ~ 0 +
= o +

Порядок полинома D(p) равен n — порядку старшего полинома
F(p). Если предположить, что в (5.72) д = 0,то коэффициент усиления
замкнутой САР к3 = к/( \+к).

Передаточная функция замкнутой CAP по ошибке. Эта передаточ¬
ная функция выражается отношением преобразований Лапласа
ошибки и задающего воздействия:

/=«- 1;
/ = п.

Ид (p)= E(p)/g( (5.74)

При q = 0 структурную схему, приведенную на рис. 5.15, гз, можно
преобразовать к виду, показанному на рис. 5.15, в. Передаточная
функция Wÿ{p) может быть выражена через передаточную функцию
разомкнутой САР:

1
Ид(/>) = (5.75)

1 + И/р(Ц'

Подставляя в выражение (5.74) значение Wÿ(p) из уравнения
(5.67), получим:

F[p)_F{p)
Ид(/>) = (5.76)

F(p)+E(p) D{p)'

Это выражение можно разложить в ряд Тейлора по возрастающим
степеням р\

WÿP)=CV+ÿP+ÿP2 +яръ +---=с(р)- (5.77)
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Такой ряд сходится при р —> 0, т.е. при / —> что соответствует
установившемуся процессу Величины Сг- называют коэффициента¬

ми ошибок. Их можно определить по общему правилу разложения
функции в ряд Тейлора:

dWÿ(p) dnWÿ(p)
; с,= ; спр=0 ’ dp J,=o dp"

р=О

Так как передаточная функция по ошибке является дробно-ра¬

циональной, то коэффициенты ошибок можно получить проще, раз¬
делив полином числителя на полином знаменателя и сравнив полу¬
ченный ряд с выражением

C(p) = F(p)/D(p).
Для определения коэффициента ошибок умножим правую и ле¬

вую части этого тождества на полином D(p). Тогда

F(p)=C(p)D(p),
или

п-1 iFnP +Fn-\P
Fn-\

(«-')!

x[D„p" + Dn_ip

+...+ FlP‘ +...+ Ftp + F0 =
Q
—“ P Cn X
1!

F 0

+...+ Djpÿ +... + /)jp + DQ J .

Cn ct i
+" Hp +-.+

n\

n-1

Приравняем коэффициенты в левой и правой частях при одина¬
ковых степенях р.

Степень р
/=0;
/ = 1;

Коэффициенты Fi
F0 = CQDQI

F\ = CJDQ + C0D\;

С2F2- — DQ+CXDX+ C0D2;i= 2;
2!

Cn Cn-1 D\ +...+ ClDn_l +C0Dn.Fn -~rDb +i= n.
(«-1)!n\
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Из выражений для коэффициентов F{ можно найти формулы для
вычисления коэффициентов Ci полинома С(р):

fp fb
D0 Fo + FQ

Cl=-ÿ(Fi -c0A -Co + A )];

f-= jr[h ~ (c,A + c0D2 )]== -L{F2 -[c, (i\ + с, ) + c0 ( F2 + E2 )]}.

Co

1

Отсюда следует формула для /-го члена:

i с,-к
{‘-k)'Dk; (5.78)

к-\

Таким образом, коэффициенты ошибок выражаются через коэф¬
фициенты полиномов F(p) и Д/г), т.е. через физические параметры
звеньев системы. На основе выражений (5.76) и (5.77) можно запи¬
сать уравнение для ошибки:

Лр) = ид(/’)ЛЛ=(с,о + с1/>+ 2! p"ÿjs(p)С2 2 С„— р +...+—
п\

Уравнение для ошибки в области времени:

д(?)=с0ло+с,я3:Ц4+...+яМW ' Л2! л!
. (5.79)

Из уравнения (5.79) видно, что при заданном g(t) ошибка Д(/) бу-

с,
дет равна нулю, только когда все -у = 0 . Поэтому физически невоз¬

можно получить систему с нулевыми установившимися ошибками.
Однако можно получить системы, у которых равны нулю отдельные
коэффициенты ошибок.
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Передаточная функция замкнутой системы по возмущению. Эта
передаточная функция выражается соотношением преобразований

Лапласа реакции и возмущения:

Wq(p) = z(p)/q{p). (5.80)

При этом структурную схему, приведенную на рис. 5.15, а, можно
преобразовать в вид, показанный на рис. 5.15, г. Передаточную фун¬

кцию определяют по уравнению (5.80) для заданного возмущения,
не учитывая все другие возмущения и задающее воздействие. Знак
ГОС на этой схеме учтен введением дополнительного звена с пере¬
даточной функцией Wn+1{р) = —1. Звено с передаточной функцией

Wn(p) находится в цепи прямой связи относительно возмущения q(p),
а звенья W\(p), Hÿip), р) — в цепи обратной связи. Поэтому

К(р) к(р)
l + W'pW

(5.81)
л+1

1 ~HWM
/=1

Перенесем точку разветвления с выхода звена Wn{p) на его вход,
введя это звено в цепь обратной связи. В этой цепи оказываются те¬
перь все п звеньев, поэтому передаточная функция цепи обратной

связи совпадает с передаточной функцией разомкнутой системы
WАр). Учтем дополнительное звено с передаточной функцией

Wn+\{p) = —1, изменив знак в элементе сравнения с плюса на минус
(см. рис. 5.15, д). Первую часть этой схемы, содержащую цепь об¬
ратной связи, можно заменить эквивалентным звеном с передаточ¬
ной функцией [1+ Ир(/?)]-1. Вторая часть Wn{p) представляет со¬
бой передаточную функцию разомкнутой САУ по возмущающему
воздействию Wÿip), так как она, в соответствии с рис. 5.15, а, оп¬
ределяет связь между выходной координатой z системы и возму¬
щением q при разомкнутой цепи главной обратной связи. Поме¬
няв местами звенья Wÿip) и [1+ Вя(/?)]-1, получим схему, приве¬
денную на рис. 5.15, е.

Таким образом, для нахождения передаточной функции САУ по
некоторому возмущению q, приложенному в любой точке системы,
следует найти передаточную функцию разомкнутой системы по это¬

му возмущению Wqp ( р) и разделить ее на передаточную функцию ра¬

зомкнутой системы Wÿ{p), увеличенную на единицу.
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w*(p)
nwv(p\

wq(p)= (5.82)

Передаточная функция no ошибке относительно возмущения. Эта
передаточная функция представляет собой отношение преобразова¬

ний Лапласа ошибки и возмущения:

WAд(р) = Ь(р)/я(р)-

Для ее определения необходимо структурную схему, приведенную
на рис. 5.15, а, преобразовать так, чтобы выходной координатой стала
ошибка А, а входной — возмущение q (см. рис. 5.15, ж). Сравнивая этот
рисунок с рис. 5.15, г, можно сделать вывод о том, что Wÿq(p) = — Wq(p).
Предоставляем возможность читателям доказать этот вывод самосто¬
ятельно. Если же на САР действует несколько возмущений, то

(5.83)

(5.84)

Уравнение выходной координаты САУ. По аналогии с выражением
(3.2) запишем операторное уравнение САУ, сложив составляющие
реакции системы от действия задающего сигнала и возмущения для
системы, структурная схема которой приведена на рис. 5.15, а:

z(p)=zg(p)+z<i(p)-

Составляющая реакции этой системы от задающего сигнала на
основе соотношения (5.71)

Составляющую реакцию от действия возмущения найдем на ос¬
нове отношения (5.80):

P)= Wq{p)q(p).

Суммарная реакция САУ при одновременномдействии задающего
сигнала и возмущения

z(p) = zg(p)+ zq(p) = Wz(p)g{p) + Wq(p)q(p).
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Если на систему действует / возмущений, то выражение для сум¬
марной реакции можно записать в виде

/

z (p) = W3(p)g(p)+ 'EW<Ii(p)qt(p) =
/=1

(5.85)r*p(p)l

{P)S(P)+'Z 9i(p)-
l + (P)i=1

Подставим в выражение (5.85) соответствующие передаточные
функции, определенные ранее как отношения полиномов:

/

=
Цр) 1 IX,р (р)чМ=«(/’)+z(p)
о(р) \ + Wp(p) i=1

/*(/>) /X)
IX,PM*X*W+л(/0 D(P) 1=1

Умножив левую и правую части на D(p), получим:

/

D(p)z(p)= E{p)g(p)+F{p)Yww{p)qi(p). (5.86)
1=1

Если в этом выражении перейти от изображений к оригиналам,
то получим дифференциальное уравнение системы.

Уравнение ошибки САУможет быть найдено по аналогии с уравне¬
нием выходной координаты. При этом также необходимо учесть две
составляющих ошибки от действия задающего сигнала и возмуще¬
ния:

/

А(р) = Дг (р)+ Д« (р) = WAg(p)- (p)q,{р) =
1=1

I (5.87)1 ЕХр(р)ъ(р)-WL(P)S(P)-
i+ÿp (р) i=l
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Подставим в выражение (5.87) соответствующие передаточные
функции, определенные как отношения полиномов:

/Пр)
«(р)-2Х,р(р)*(р)д(р)= , т.е.

D(P) /-1

/

D(p)A(p)= F(p) g{p)-'ÿWqAp)‘lM (5.88)
/-1

Полученные выражения (5.86) и (5.88) позволяют найти зако¬
ны изменения реакции и ошибки системы (законы движения) при
воздействии на систему задающего сигнала и возмущения, кото¬
рые используют при расчете процессов регулирования в линей¬
ных системах.

5.4. Частотные характеристики разомкнутых
и замкнутых САУ

Частотные характеристики можно получить, заменив оператор р
на усо в выражениях передаточных функций.

Так, для разомкнутых САУ

(7е0) = Е(усо)/F(усо); (5.89)

для замкнутых

F(ju))+ E(ja) 7)(у'(о)’
(5.90)W3(jсо)

по ошибке

1
(jeo)

l + fFp(yco)’
(5.91)

по возмущению

itt'pW
(5.92)
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Таким образом, все ЧХ (5.90)—(5.92) выражаются через ЧХ ра¬
зомкнутой системы. Их графики можно построить по графикам ЧХ
разомкнутой САУ с помощью специальных номограмм [8]. Поэто¬
му ограничимся рассмотрением способов построения ЧХ разомк¬
нутых САУ.

Частотная характеристика разомкнутой системы, состоящей из
нескольких последовательно соединенных звеньев, в соответствии
с (5.60) определится выражением

wi(H (5.93)

1=1

Выразим эту характеристику через АЧХ и ФЧХ:

к
Лр (со)ехр[у'фр (со)] = YlAi (со)exp[уф/ (со)]. (5.94)

/=1

Отсюда по правилам перемножения векторов:

Лр((о)=П4(“);
/=1

к
фрМяЁф/М-

(5.95)

(5.96)
/=1

Задаваясь значениями частоты со, можно построить на комплекс¬
ной плоскости амплитудно-фазовую характеристику САУ как го¬
дограф вектора ЧХ в соответствии с выражениями (5.89—5.96). Зна¬
чительно проще построить логарифмические частотные характе¬
ристики (ЛЧХ) разомкнутой САУ, сложив графически фДсо) и
При этом из выражения (5.95) следует, что ЛАЧХ разомкнутой САУ
определяется выражением

к

/=1
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В качестве примера рассмотрим построение ЛАЧХ разомкнутой
САУ частотная характеристика которой имеет вид:

*(1+7(07;)
Wv(j<s>) =

7'0)(!+ >)7’2)(l + 7<rt7;)'

Амплитудная и фазовая частотные характеристики этой системы:

W1+(m7i )2
4(<о)=

co-\/l + )2 -ÿ/l + (to 7я )2 '

Фр (со) = -90° + arctg со 7] -arctg со Т2 -arctg со Г3.

Логарифмическая амплитудная частотная характеристика системы:

Lp (со) = 20 lg к-201gco + 201gÿl + (co7])2

-201gДфТТ-201gÿ/l+(o)7-3)2.
(5.97)

Допустим, чтосопрягающие частоты этойсистемы находятся всле¬
дующих соотношениях: (сосп1 = 1/Тх) < (сосп2 = \/Т2) < (сосп3 = 1/Г3).
Тогда уравнения асимптот имеют вид: Та1(со) = 201g& — 201goo при со
< сосп1 [графиком Та1(со) является прямая с наклоном — 20 дБ/дек,
проходящая черезточкус координатами со = 1, Та1(1) = 201gA:(рис. 5.16)];

Za2(со) = 201g£— 201gco + 201gco711 при сосп1 < со < сосп2 [графиком Та2(со)

является горизонтальная прямая]; Ia3(co) = 201gк — 201gco + 201goo7j —
—201gcoT2 при сосп2 < со < сосп3 [графиком со) является прямая с
наклоном — 20 дБ/дек]; Та4(со) = = 201g& - 201gco + 201gco Ту -

-201gco Г2 — 201gco Г3 при со > сосп3
[графиком Та4(со) является пря¬
мая с наклоном —40 дБ/дек].

L, дБ

201g&

Аз
А*

Рис. 5.16. Пример построения ЛАЧХ
разомкнутой САУ по (5.97) при (со , =

= 1/Т,) < (сосп2 = 1/Т2) <(сосп3 = 1/Т3)
0

со = 1 <осп1 сосп2 ЮспЗ со
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Частотная характеристика разомкнутой САУ для передаточной
функции по (5.69) имеет вид:

*П(1+/вГ,)
и=1И"р (№)= 3 Y

ycovП (1+ усо7;)П( I -ю2т}+ 2(0«sTs )
Г=1 5=1

Амплитудная и фазовые частотные характеристики такой системы:

и=1Л(ш)=

MvnVl + ®2ÿ2nJ(l-®27’s2)2+(2(onJ7;)2
Г=1 5=1

«Ру

v •90° + arctg со Ти - arctgсо Tr - arctg
2соя57;

<рр(м)
l-w2rsrМ=1 Г=1 5=1

Способ построения ЛАЧХ для этой системы остается таким же,
как и для ранее рассмотренной.

При построении ЛАЧХ многоконтурной САУ необходимо выде¬

лить участки структурной схемы Wa{p), охваченные местными об¬
ратными связями Wb{p) (рис. 5.17, а). Передаточная функция такого
участка

«ШWAP) (5.98)
1 + Wa(p)MP)'

ба

8 -i К<2>— Wa

\гос
гос

Рис. 5.17. Структурные схемы многоконтурных САУ
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Для того чтобы систему можно было рассматривать как однокон¬
турную, ее передаточную функцию можно также представить в виде

ЩрЩМ w„{p)
Щр) 1 +КЩрУ

При этом WJÿp) = Wc(p)/[1+ Wc(p)] можно рассматривать как
новый замкнутый участок структурной схемы, a Wc{p) = Wa{p)x
х — как передаточную функцию прямой разомкнутой цепи
(рис. 5.17, б).

В дальнейшем исходную систему можно считать одноконтурной
с последовательно включенными звеньями W\(p), Wÿip) и W2(p).

Определить ЧХ для Wd{p) можно аналитическим способом по
формулам (5.98) и (5.99). Однако большее распространение полу¬

чил графический метод расчета по специальным номограммам, по¬
зволяющим по ЛЧХ разомкнутой части структурной схемы опре¬
делить характеристики замкнутого участка.

1
Гуч(р) (5.99)

5.5. Установившийся режим работы САУ

Установившимся называют режим работы САУ, при котором все
сигналы в ней не изменяются во времени. Такой режим работы назы¬
вают еще статическим [1, 32]. Установившийся режим работы САУ
изучают с целью обеспечения заданной статической точности, а так¬
же для определения статической характеристики системы по ста¬
тическим характеристикам отдельных ее звеньев.

При этом под статической характеристикой понимают связь
между выходной и входной координатами звена (системы) в устано¬
вившемся режиме. По виду статических характеристик различают
статическое и астатическое регулирование.

Статической называют такую САУ, которая после приведения к
одноконтурной схеме содержит только позиционные звенья.

Уравнения выходной координаты и ошибки САУ в установив¬
шемся режиме можно получить, приняв в (5.85) и (5.87) р—> 0, тогда

z = lim/?z(/?);
/>—>о

1Х,р(°)[я№«],=„; (5-,00)1
zy = W3(Q)[pg{p)\

Р=° 1+Жр(0) /=1
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Ay = МтрА(р);
pÿ>o

2XP(°)I>W]1Ау=Ид(°)[д?(/>)] (5.101)
p=o‘p=° 1+ÿ(0)..

Как видно из (5.100) и (5.101), выходная координата и ошибка
САУ зависят от всех воздействий, приложенных к системе. По-пре¬
жнему можно считать, что:

дг=дж+дZy-Zyg+ZУЧ • УЧ ’

При этом

2«=яз(0)[я(р)]/,=о;

T,ww (°)[w/M]

1

1+ Жр(0)ы
Аж

1
А

УЧ р=О’1+ /=1

Значения передаточных функций, входящих в эти выражения, на
основе (5.67), (5.72), (5.84), (5.75) и (5.82) запишем через соответ¬
ствующие коэффициенты усиления:

»"р(о)=*. )~,»гл(о)=тА_,
где А: — коэффициент усиления разомкнутой САР;

Ая.р — коэффициент усиления по возмущению разомкнутой САР, опреде¬

ляемый по коэффициентам усиления звеньев, стоящих в цепи, от /-го возму¬
щения к выходной координате z.

Часто величину

1

WlTГ* (5.102)=s
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называют статизмом регулирования. Статизм характеризует значе¬
ние отклонения выходной координаты на единицу отклонения за¬
дающего воздействия. Кроме того, в линейных САУ статизм может
быть определен по относительному отклонению регулируемой ве¬
личины:

= (zo-zmin )/z0 = Az/z0 ,

где Zg и zmin — заданное и минимальное значения регулируемой величины.

Задавшись возможным диапазоном Az и приравняв выражения
(5.102) и (5.103), можно найти необходимое значение коэффициен¬

та усиления разомкнутой САУ.
Как видно из уравнения (5.101), ошибка в статической системе

зависит от значения приложенного воздействия g и В большин¬
стве случаев такая зависимость является нежелательной. Полное ус¬
транение статической ошибки в системе возможно, если Вд(0) = s =

= 0 и все Wq (0) = 0. САУ с нулевыми статическими ошибками на¬

зовем астатическими. Ниже будет показано, что это условие легко
выполнить, введя в состав САУ интегрирующее звено. Звено необ¬
ходимо включить так, чтобы оно не попало ни в одну цепь передачи
воздействия от любого возмущения qt к выходной координате.

(5.103)



Глава 6. МОДЕЛИ ЛИНЕЙНЫХ СИСТЕМ

В ПРОСТРАНСТВЕ СОСТОЯНИЙ

6.1. Модели односвязных непрерывных линейных
стационарных САУ

Использование моделей «вход—выход» характерно для класси¬
ческой теории управления. В современной теории управления вво¬
дится понятие «пространства состояний системы» [13]. Синонимом
этого термина является термин «фазовое пространство». При рас¬
смотрении линейных систем [26] обычно говорят «пространство со¬
стояний», при рассмотрении нелинейных систем чаще используют
термин «фазовое пространство». Для введения этих важных поня¬
тий рассмотрим вначале иную форму моделей системы. Пусть мо¬
дель «вход—выход» задана дифференциальным уравнением

п-1 dmu dm~'u
__

n „ „ 1Ч=0’т-п’ (6Л)
dny d

dtn ’ dtn~x
duУf “,У,? •

где у и и — соответственно сигналы на входе системы и управление;
/ — время.

Дифференциальное уравнение п-го порядка преобразуем в систе¬
му, состоящую из п дифференциальных уравнений первого порядка:

=fi(x\,x2, ...,xn,u,t), / =1,2,...,и,

и уравнение, связывающее у с переменными , х2, ..., хп, и:

У = <р(хьх2,...,хп,и).

В том случае, когда на входе системы гсигналов и2,

Xj=fi (хьх2, ...,хп,щ,и2, ...,ur,t), i = l, 2,...,п;

y = ty(x\,x2, ...,xn,uhu2, ...,ur).

(6.2)

(6.3)
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Для автономных (стационарных) систем левая часть уравнения
(6.1) и правые части уравнений (6.2), (6.3) не зависят от времени.

Функции xt называют фазовыми переменными (или фазовыми ко¬
ординатами), а множество значений фазовых переменных опреде¬
ляет фазовое пространство (пространство состояний).

Пусть функционирование системы при t> /Q описывается линей¬
ным дифференциальным уравнением с постоянным коэффициентом.
Общее решение этого уравнения зависит от произвольных постоян¬
ных, которые можно определить из начальных условий при t =
Состояние системы в момент /0 содержит всю информацию о про¬

шлом системы, необходимую для определения реакции на произ¬
вольный сигнал, т.е. состояние системы в момент отделяет буду¬

щее от прошлого. В момент времени ti значения фазовых перемен¬

ных Xj, х2, хп определяют положение точки в пространстве
состояний или, иначе, задают состояние системы. Последователь¬
ность состояний (Х|, х2, определяет фазовую траекторию.

Рассмотрим способы преобразования дифференциального урав¬
нения я-го порядка в систему из п дифференциальных уравнений

1-го порядка.
Пусть модель «вход—выход» системы имеет вид:

dny dn~ly dy
—-,——г,...,—,у,и,1 =0,
dt dtn~x dt

(6.4)/

где у — сигнал на выходе системы;
и — управление — сигнал на входе системы.

Введем обозначения:

. d2y dn-\dy
T=*I; -тг=*2;

dt

У= *3» - = хп.•5

л2 dt"-'

Тогда при этих обозначениях уравнение (6.4) преобразуется в си¬
стему из п дифференциальных уравнений 1-го порядка и уравнения
для выходного сигнала:
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f[ÿ-,x„,-,x2,X\,u,t 1 = 0;

dxy _
x2’dt

dx2 _ (6.5)x3;
dt

dxn-1 _
xnl>dt

У = хi-

Проиллюстрируем эту процедуру на примере преобразования ли¬
нейного дифференциального уравнения п-то порядка с постоянными
коэффициентами, являющегося моделью «вход—выход» линейной
стационарной односвязной системы. Пусть модельсистемы имеет вид:

dn~ly dy--Y ...+ CL\--Y йг\у — U.

dt"
1 dt

dny
(6.6)--Y an_t

dtn
В том случае, когда в дифференциальном уравнении коэффи¬

циент Лп при старшей производной отличен от 1, делят левую и
правую части уравнения на А и преобразуют исходное уравнение к
виду (6.6).

Введем обозначения, приведенные выше. Тогда модель «вход-
выход» преобразуется в модель, состоящую из п дифференциаль¬
ных уравнений 1-го порядка:

‘К _
u-a0xi-aiX2-...-an_ixn;

dt

dxn-\
=*„;

dt

dx2 = x3;
dt

dxi = x2dt

(6.7)uy = xv
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(л-2)(я) .
У = Хп

(л-1)+ у=*1У

I 2 \и •••

«л-1

ап-2

«О

Рис. 6.1 Схема, моделирующая линейное дифференциальное уравнение «-го
порядка

Схема, моделирующая уравнение (6.7), представлена на рис. 6.1.
В этой схеме прямоугольник, в котором поставлен символ «ин¬

теграл», является интегратором (функция на выходе является ин¬
тегралом от функции на его входе); прямоугольник, в котором по¬
ставлен символ а — усилителем с соответствующим коэффици¬
ентом усиления; кружок — алгебраическим сумматором.

Сигналы на выходе интеграторов определяются выражением

(<)=яу
У

dtl ’

На схеме рис. 6.1 u-an_iyÿn -ап_2УяП у = уп
ностью соответствует уравнению (6.6). Введенные выше обозна¬
чения фазовых переменных на выходе интеграторов также приведе¬
ны на схеме. При этом система уравнений (6.7) может быть непос¬
редственно выписана из схемы моделирования. Обратим внимание
на то, что выходы интеграторов являются фазовыми переменными.

Схема моделирования приведена лишь для того, чтобы в более
сложном случае, рассматриваемом ниже, можно было, базируясь на
описанном подходе, дать способ преобразования моделей.

В матричной форме система уравнений (6.7) имеет вид:

, чтопол-

Го1х О 1 О

О 0 1

О х{1

О ох2 х2
О (6.8)+ и,

0 0 0 1

1хп -а0 -а{ -а2 ... -а„_{ хп
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(6.9)У = х1>
или в сокращенной форме:

Х = АХ + Вм, (6.10)

(6.11)у = х1>
где В — вектор-столбец, состоящий из (л — 1)-го нуля и последней единицы.

Пример 6.1

Преобразовать модель «вход—выход» А2у + Аяу + = kz в матричную мо¬

дель.
1-й шаг.
Преобразуем заданное дифференциальное уравнение так, чтобы коэффи¬

циент при старшей производной был равен 1:

у + а]у + а0у = и, (6.12)

где

ах = —;а0 =—;« =— z.]

А2
0

л2 а2
2-й шаг.
Разрешаем дифференциальное уравнение (6.12) относительно старшей про¬

изводной:

у = и-а{у-а0у. (6.13)

3-й шаг.
Рисуем моделирующую схему уравнения (6.13) и вводим обозначения фа¬

зовых переменных на выходах интеграторов так, как это показано на рис. 6.2.

У = х2+ У = хi

I Iи

а\

«о

Рис. 6.2. Схема, моделирующая линейное дифференциальное уравнение
2-го порядка
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4-й шаг.
Выписываем систему уравнений:

х{=х2;

х2 =«-«0*1
y = Xj.

(6.14)

5-й шаг.
Записываем систему (6.14) в матричной форме:

*1 0 1 X] и
+ и.

*2 1-% -ах\\_х2_

У = х1.

Более сложным является преобразование дифференциального
уравнения вида

dn~'dny--н ап_\
dtn dt

Обратим внимание на то, что порядок производной правой части
уравнения (6.15) не превышает порядка производной левой части.
Этим учитывается отсутствие в практических приложениях идеаль¬
ных дифференцирующих звеньев.

Представим уравнение (6.15) моделирующей схемой, приведенной

на рис. 6.3.
Непосредственно из схемы моделирования следует:

у = х{+Ь0и-

*1 =х2 +biu;

+"-+а\~т:+аоУ-$п ——+•••+ Pi — +М- (6.15)
dt dtn dt

У
п-1

(6.16)

(6.17)

Х/с=хк+\+Ьки’ к<п’
xn=bnu-a0xl-alx2-...-a„_lxn.

Откуда, дифференцируя равенство (6.16), с учетом (6.17) получаем:

у = Xj + Ь$й = х2+Ь1и + Ь0й.
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=i i i 1
к K-\ Ь\ ь»

Г;+
Оп) .

У =Хп Л-1 Л-1 ...Л8я|Л УI+

\ +

ОШ

И
Рис. 6.3. Схема, моделирующая линейное дифференциальное уравнение п-то
порядка, в правой части которого линейная комбинация функций и ее произ¬

водных

Аналогично, остальные производные.у равны:

у = + Ь\й + Ьцй = *3 + 1>2U + t\ii + Ь$й\

У l'}=xn+bn_lu + bn_2u(lK... + b0u(n

Уя =(bnu-a0xl-alx2-...-an_lxn)+ bn_luÿ +...+ Ь0ияп\ (6.18)

(«-!) (6.15) и сопоставляя результат с у(п\Подставив у,у, ...,у

задаваемый уравнением (6.18), получаем рекуррентную процедурудля
вычисления коэффициентов bf

в

*0 =Р«5
h 1 ~ап-\Ь0’

= Р«-2 ~ап-2Ь0’

К -Ро ~ап-\К-\ ~ап-2Ьп-2~-"~а0Ь0-
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Эта система может быть представлена в матричной форме;

Рн О о ... о1 *0
Ря-1 1 о оап-\

ап-2Зл-2 1 О hап-1

Ро 1 рпа0 а\ ап-1
откуда

-1
РлО ... о1 О

Рл-11 о оап-\

ап-2 Рл-2*2 О (6.19)ап-1

Зок 1а0 а\ ••• ап-1

где [] 1 — обратная матрица коэффициентов.

Введем обозначения, которые будут удобны в дальнейшем при
рассмотрении многосвязных систем:

*1
: =В, Ы = В. (6.20)

А,

Непосредственно из схемы моделирования следует:

/=л—1

хп = Ъпи- an_i_iXn_i;
/=0

Vi=Vi"+ÿ; (6.21)

JCj =яЦ + Х2

причем на выходе схемы моделирования

y = b0u + x1. (6.22)
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В матричной форме систему уравнений (6.19) и (6.21) можно за¬
писать:

(6.23)

(6.24)

Х = АХ + Вм;

у = Ьци + хь
где

О О О1
*1 О О 1 о
х2х = ; а =

о о о 1
*п

-OQ -щ -а2 ~ап-\

матрица В определена выше;
и — управление (при наличии одного входа — скаляр).

Для решения этой системы дифференциальных уравнений вос¬
пользуемся аппаратом преобразования Лапласа:

p*i(p)-*i(°)
рх2(р)-х2(0)

Х1(р)
х2(р)

+ Ви(/>);= А

Рхп{р)-х„{0)J
у(р)= Ь0и(р)+

где Xj(0), х2(0), ..., хл(0) — начальные условия, величины фазовых координат
при t = 0.

Откуда

/>1Х(/>)-Х(0) = АХ(/>)+Ви(/>)
и

(/>1-А)Х(р) = Ви(р) + Х(0), (6.25)

где I — единичная матрица размерности п.
Х(0) — вектор-столбец начальных условий фазовых координат.
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Умножив левую и правую часть уравнения (6.25) на обратную мат¬
рицу [р\ -А]-1, получаем:

Х(Ц = н(р)(р1-АТ'в+(р1-А)ЧХ(0), (6.26)

где первое слагаемое определяет изображения фазовых координат вынужден¬
ной составляющей переходного процесса, второе — изображение фазовых ко¬
ординат свободной составляющей.

Способ получения обратной матрицы описан в примере 6.2.
Переходя к оригиналам, получаем зависимости Xj(t), х2(t), ...,xn(t).

Сигнал y(t) на выходе системы определяется по формуле (6.24). Если
(30 = 1, (3,- = 0(/ = 1, 2, ...,п), то bi = 0(/ = 1, 2, ...,п), bn= 1 и система
уравнений (6.21) совпадает с (6.7).

Пример 6.2
Модель системы задана:

— = *2; — = Зх2 — 2jcj;
dt 2 dt 2 1

У = х\\ Xi (О) = 0; х2 (0) = 0.

Сигнал на входе системы u(t) = 1(р.
Требуется найти Х](/) = y(t) и x2(f).
Для данной системы

Г01 1 о'
0 1

о 1
А = :В= ; Е =

-2 -3 ’ 1 ’

Тогда

1 0" 0 1 -1РрЕ-А = р
0 1 -2 -3 +2 р +3

Обратная матрица вычисляется по формуле

_Adj\pE-A\
|/?Е-А|

-1[рЕ-А]

где | — А | — определитель матрицы [рЕ — А];
Adj{pE — А] — присоединенная матрица.

Для ее вычисления находим алгебраические дополнения Су элементов мат¬
рицы [рЕ — А]. Потом составляем матрицу элементами которой являются ал-
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гебраические дополнения. Эту матрицу транспонируем. В результате получаем
присоединенную матрицу .

В рассматриваемом примере

Си=(-1)1+1(р+3); С12=(-1)'+2-2= -2;

C2I=(-I)2+1(-I)=1; C22=(-I)2+2 р = р.

Матрица алгебраических дополнений

/7 +3 -2
№ 1 Р

Результат транспонирования — присоединенная матрица:

/7 + 3 1[с„]т=А</;[/,Е-А]=
-2 р.

Определитель матрицы рЕ — А равен (р+3)р —(—2)-1 = /72 + 3/7 + 2.
Тогда

/7 + 3 1

р2 +3/7 + 2
1

pL +3/7+ 2[рЕ-А]-1 = (6.27)
-2 Р

2 2
Р +3/7+ 2 /7 +3/7 = 2

матрица

Г01в = (6.28)
1

Изображение входного сигнала м(?) = 1(/) равно:

1
и(р)ш-. (6.29)

Учитывая, что начальные условия нулевые, х(р) определяется первым сла¬
гаемым (6.26). После подстановки в (6.26) выражений (6.29), (6.27) и матрицы В
получаем:

* Читателю, не знакомому с используемыми алгебраическими понятиями,
рекомендуется прочесть приложение 3.
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1
Р + 3 1

(/72+3/7 + 2)/72 2

Мр)\ Р

Го!р +3/я + 2 р +3/7 + 2
. (6.30)

-2 Р Р

/72 +3/7 + 2 /72 +3/7 + 2 (/72 + 3/7 + 2 j /7

Корнями знаменателя являются /7j = 0; /72 = —1; /73 = —2.
Тогда

1 1 1 -<Г'Д<Г2';дс|(/)=2Г1 1=1Г
(/72+3/7 + 2)/7 /7( /7 +1)( /7 + 2)J 2 2

1 1
x2(t) = L~l -I=Г

(р+ \)(р+ 2)
=е

2р +3/7 + 2

у(0 = *i(0-

В рассматриваемом примере Xj(0 — переходная функция системы, x2{t) —
импульсная (весовая) характеристика системы.

Рассмотрим далее алгебраический способ* преобразования моде¬
ли «вход—выход» в систему из п дифференциальных уравнений 1-го
порядка. Пусть дифференциальное уравнение имеет вид:

dn~xy dy
-— н-----ici\--1- аг\у =
Л"-1 1 л йУ

dny

а»-яг+а»-'
Q d"u „

= р„—
(6.33)

dn~xи „ du'

— +-+ р,— + Р0и.

Вданном случае в отличие отдифференциального уравнения (6.15)
коэффициент при старшей производной у равен ап.

Переходя к изображениям, имеем:

[апРП + ап-\РП~Х + •••+а\Р + а0 ) У (р) = (P«/7W + К-\РП~1 + ••-+ Pi/7 + Ро ) и{р).

* Способ разработан А.И. Сеславиным (заведующий лабораторией кафед¬
ры «Управление и информатика в технических системах» Московского госу¬
дарственного университета путей сообщения).
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Следовательно,

[$ъ+$\Р +--+$пРпУ(р)-[%+а\Р+--+апРП)у{р) = Ъ.

Преобразуем это уравнение:

$0и(р)-а0у(р)+ р{$1и(р)-а1у(р) + р[$2и(р)-а2у(р)+

+р[$3и(р)-а3у(р)+ ---
+ р[$п-Ар)-ап-\У(р)+ р[$п“(р)-апУ(р)\ }= 0-

хо(р)

XI{P)

Введем обозначения:

*0 (р) =$п“{р)-апУ{рУ’

Xi{p) =$n-Ap)-an-iy{p)+ РХо{р)>

Х2(р) = Рп-2и{р)-ап-2У{р) + Рх\{рУ’

(6.33)

(6.33)

(6.34)

ъ(р)=$n-iu[р)~апчУ(р)+m-1 ( р); (6.35)

хп-\ (р) =$\и(р)~а\у(р)+ Рхп-2{рУ

Ъ = $0“{Р)-Ч)У(Р) + Рхп-\(Р)-

(6.36)

(6.37)

Из (6.33) следует:

у{р) (6.38)
ап
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Подставив у{р) из (6.38) в выражения (6.33)—(6.37), получаем сис¬
тему уравнений 1-го порядка относительно изображений:

М(р)~*о(р)
х\{р)=$п-\и{р)~ап-\ +рч(р)>

ап
$пи(р)~хъ(р)

х2(р) = $п-2и(р)-ап-2 + рх](р);
ап

$пи{р)~хо{р)
xi(p) = + pxi_l(p); (6.39)

«я

$АрУч[р)
хп-\(р) =$\и(р)-а\ + Рхп-2(Р)>

ап

+ Рхп-1(Р)-0 = Po«(p)-flo
ап

Откуда

$п-\ап $пап-\ап-1рхо(р) = хЛр) хо(р) “ (р)>
ап “п

Ря-2ая ~Ряая-2ап-2рх1(р) = х2(р)- хо{р)- и(р);
ая ая

Ря-<ая ~Ряая-/
Pxn-i (р) = xi{р)-—хй(р) . (6.40)и(р);

ая ая

рхп-2 (р)= х„-\ {р)-—хо ( )-
р'а"

.
Р”й‘ »(р);

Р*я-1 (/») = -—яЛГО (/>)-

ая ая
$0ап ~$па0 «(/О-

вл

Переходя к оригиналам в (6.40), получаем при нулевых началь¬
ных условиях систему уравнений из п дифференциальных уравне¬
ний 1-го порядка:
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$n-lan ~$nan-\dx0 _ an-1—77~x\--x0 ” U\
dt an an

fin-2an $nan-2dxi an-2 u;~~TT = x2~ x0 ~

dt an an

$n-ian $nan-idxi-1 an-i (6.41)= xi - xo — u;
dt an an

dxn-2 a\= xn_} —-x0- u;
dt an an

ftpan -$naО ndxn-1 _ «1 v---x0“dt an an
Сигнал на выходе системы после перехода из (6.38) во времен¬

ную область определяется выражением

Р 1
У =—и--х0.ап ап

В матричной форме модель имеет вид:

(У„_1 -$п-\апап-1 О ••• О1
ап ап

$пап-2 $п-2апХр ап-2 Хр
О 1 ••• О

Xj ап апXj

и, (6.42)+

$па\-$\апхп-2

хп-1
хп-2

хп-1
а\ О О ••• 1
ап ап

Мр-Мяйр о о ••• о
ап ап

Р„ 1
У =—и---х0.ап ап
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Пример 6.3
Требуется, используя алгебраический способ, преобразовать модель «вход—

выход» системы

У + а\У +а0у = $\й + $0и

в матричную модель. Для решения этой задачи воспользуемся выражением
(6.42) при п = 2:

(6.43)

а2 = 1> ЁЬ =

-Pi*0 1-ах *0 (6.44)+ Л
и.

-РоО хх-а0

(6.45)У = —хо-
Рассмотрим здесь же обратный переход от матричной модели к модели

«вход—выход».
Из (6.44) получаем:

*o=-fli*o+*i-Pi«;

*1 = -tf0*o+*i-Pow-

(6.46)

(6.47)

Из (6.46) следует:

*l=*0+fll*0+Pl«-
Подставив (6.48) в (6.47), получаем:

(6.48)

*0 + «1*0 + Pl«--Яо-яо -PoW’
откуда

*0 + fll*0 +floxo — —Pi"-Ро-
После подстановки в это уравнение у = — (см. выражение 6.45) получаем

уравнение, совпадающее с (6.43).

(6.49)

6.2. Модели многосвязных непрерывных линейных
стационарных систем автоматического управления

До сих пор рассматривались системы с одним входом и одним
выходом (односвязные системы). В общем случае у системы может
быть г-входов и /-выходов с перекрестными связями (многосвязные
системы) [26]. Начнем рассмотрение таких систем с примера, про¬
анализировав который, можно перейти к общему случаю.
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Пример 6.4
Допустим, что система с двумя входами и двумя выходами описывается сле¬

дующими дифференциальными уравнениями:

У\ +а\У\ + %У\ -bjiii +1\щ + срл2 + сои2’

У2+ЩУ2 =1\Щ + к\й2 + к0и2,

где и у2 — сигналы на выходе системы;

Mj и м2 — сигналы на входе системы.

Требуется получить совокупность передаточных функций, связывающие
входы и выходы системы.

Используя преобразование Лапласа при нулевых начальных условиях, пре¬
образуем принятую систему уравнений к виду:

Р2У\ (р)+а\РУ\ [р)+%У\ (р)=Ь2р\ (р)+ Ь\РЩ ( р)+схри2 (р)+с0и2 (р)\

РУ2{р)+ ЩУ2 (р) =1\РЩ{р) + к\ри2 (р) + к0и2 ( р).

Откуда

У\ (р)(р2 +alP+a0) = ul (р) (lbр2 + b]p)J +(c]p+c0)u2 (р);

У2(р)(р+щ)= щ{р)1\Р + и2{р){к\Р + ко),
и

уМ= «Ф)+
р + ахр + а0

Уг(р)=-яг—и\{р)+
Р+ Щ

С\Р + Ср
“2 (р);

2р + ахр + а0

к\Р + к0 и2{р).
Р+Щ

Запишем эти уравнения в матричной форме:

Ь2р2 +1\р С\Р + Ср

уЛр)
=У2{р)_

“I{р)

и2{р)_

2 2
Р +а\Р+% р + ахр + а0

к\Р+ к0кр_
р+щ Р+ Щ
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Обозначив

b2p2 +blp соWil (P) = ; Wn (P)=1 2p +a{p + a0 p +Cl\P + <JQ

l\P k\P + k0W21{P) = W22{p)=
P+ m0 P+ m0

получим матричную передаточную функцию системы:

'щ (р)Щг

.я21 (р)

Обобщим этот пример для случая системы, имеющей r-ÿÿÿÿÿÿ и
/-выходов. Передаточная функция Wÿ{p) определяется выражением

уМ
UJ(P)

Таблица из элементов Wÿip), где индекс i обозначает строку, ин¬
декс jобозначает столбец, называется матричной передаточной фун¬
кцией,:

W(p) =

Щр)= при Ujc(p) = 0, когда к

Wn(p) Wl2(p)... Wlr(p)
*21(p) W22(p) w2r(p)

w(p)= (6.50)

**7i (P) wn(p) - w,r(P)

Изображение входных сигналов записывают в виде вектора-стол¬
бца:

«1 (р)

«2 (Р)
U(p) = <6.51)

иг(р)
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Тогда изображения сигналов на выходе системы определяют сле¬
дующим матричным произведением:

(/>) = W(/>)U(/>). (6.52)

Результатом умножения является вектор-столбец Y(р), состоящий

из / строк, в каждой /-й строке которого записывается изображение
/-го сигнала на выходе системы, т.е.

j=r

yi(p) = HWij(p)uj(p\ (6.53)

7=1

Переходя от изображения у{р) к оригиналу, получаем /-й сигнал
yfi) на выходе системы.

Матричную импульсную характеристику системы К(/) получают
после перехода от изображений к оригиналам для каждого элемента

Wjj{p) матрицы W(/?):

*11 (0 *12 (0 *1г
*21(0 *22 (0*2к(О (6.54)

*л(') *«(') *//-(0

Сигналы на выходе системы находят в соответствии с интегра¬
лом свертки:

t

Y(t)= |к(т) U(/-x)flfx.
0

(6.55)

Это символическая запись того, что

j=r t

и(0=Z 1я(т)му(/_т)ят’ i=l’2’ •я•»/я (6.56)

7=1 0
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Стандартной формой модели линейной системы, имеющей г вхо¬
дов и / выходов, в современной теории управления является система
уравнений:

*(0= A(f)X(/)+ B(/)U(/),

Y(0=C(/)X(/)+D(/)U(f).

В случае стационарной линейной системы

X(/) = AX(f) + BU(f);

Y(f) = CX(/) + DU(f),

(6.57)

(6.58)

(6.59)

(6.60)

где

*1 У\ и\

х2 У2 и2Х = ; Y = ; и =

хп У1 иг

и элементы матриц А, В, С, D не зависят от времени.
При

т
*1«1 У\

ь2о о
; D =[60];C = [lOO...O]и = ; Y = ; в =

Ко о

приведенная система уравнений совпадает с полученной ранее мо¬
делью односвязной системы.

В общем виде блок-схема модели, соответствующая приведенным
уравнениям, показана на рис. 6.4.

Рассмотрим ряд примеров, иллюстрирующих процедуру постро¬
ения стандартной формы модели многосвязной линейной стацио¬
нарной системы с помощью моделирующих схем.
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D(/)

Xи + Y
J=ÿ B(0 C(t)

++ Ж +

A(0

Рис. 6.4. Блок-схема модели многосвязной непрерывной системы управления

Пример 6.5
Система задана дифференциальным уравнением

У\ + Зу\ + 2у2 -«1;

У2 +У\ +У2 ~и2-

Требуется получить стандартную форму модели этой системы.
Вначале построим моделирующую схему системы, для чего разрешим дан¬

ные уравнения относительно старшей производной:

у1=щ-3у1-2у2;

У2=и2~У\-У2-

Моделирующие схемы для первого и второго уравнений приведены на
рис. 6.5 и 6.6.

Объединим обе моделирующие схемы (рис. 6.7).

<8> J
+

Ln
Рис. 6.5. Моделирующая схема первого уравнения

Ух

У2 У2 У2
I I

Рис. 6.6. Моделирующая схема второго уравнения
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2

>>1 = *2 У\ = х\У1 = Х2 I J

Ln *2 = *i

У2 = *4 у2 = х3«2
х4 = х3+

Рис. 6.7. Объединенная моделирующая схема

Введем обозначения, записанные непосредственно на моделирующей схе¬
ме, как фазовые переменные на выходе интеграторов. Тогда система описыва¬
ется уравнениями:

dx\_r.dx2_u 7х--Х2, — -Щ -2Х3-ЗХ2,
dt

dx3 _ clx4
X4,-ÿ-=U2-X2-X3;dt

У\=хь У2=хз-

Переходя к матричной записи, получаем стандартную форму модели:

'О 0“'0 1 0 0'
0-3-20

0 0 0 1

0-1-10

*1 *1

х2 1 0х2 "1 •+
*3 о о*3 «2

х4 0 1*4

*1
'10 0 0'
0 0 10

У1 х2
+[0 0]

Л *3 L"2J
L*4J
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Откуда

'0 1 0 O'
0-3-20

0 0 0 1

0-110

ГО 01
"10 0 o'
0 0 10’

1 о
; D = [0 0] = 0.; в= ; с=А =

О О

О 1

Пример 6.6
Система задана дифференциальными уравнениями:

У\+У\=и1+2и2;

У2+Ъу2+2у2=и1+и2+й2.
(6.61)

Требуется получить стандартную форму модели этой системы.

Отличием от предыдущего примера является наличие производной й2 в си¬

стеме уравнений. Преобразуем систему уравнений, разрешив первое относи¬

тельно старшей производной j>| , второе — относительно у2~й2 :

у1=и1+2и2-У1,

у2-й2=и1+и2-3у2-2у2.

Построим для каждого уравнения свою моделирующую схему и объединим
их (рис. 6.8).

У\и1 & У\т
2

+
У2~“2 + У2и2 + 1 1

Х2 х\+
3

2

Рис. 6.8. Моделирующая схема системы уравнений (6.61)
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Введем обозначения, записанные непосредственно на моделирующей схе¬
ме. Тогда система описывается уравнениями:

dx\
——-х2 + и2;
dt

dx2 _
и2 +щ -2хх -3(х2+и2)= -2и2 +щ -2хх -Зх2;

dt

dxз = их+2и2-хъ, уу=хз, У2=хх.
dt

Переходя к матричной форме записи, получаем стандартную форму модели:

Го 1 1О 1 о
-2 -3 О

*1 *1
-2 * ;

О О -1JL*3J [1 2 JLW2 J
1 (6.62)+х2 х2

*3

XI'О О Г
1 О О

У\ и\
х2 +[0 0] (6.63)

У2 “2
х3

Поставим далее задачу определения реакции многосвязной ли¬
нейной стационарной системы на совокупность заданных входных
сигналов. Модель системы определяется уравнениями (6.59), (6.60).
На входе системы г входных сигналов

ui(0
“2(0и =

"<я(о
Требуется определить зависимость от времени фазовых перемен¬

ных:

х\(’)

х2(0X =

хп(0
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и сигналов на выходе системы:

У\(<)
Ж1)

Y =

Л (О

Начальные условия заданы:

х\ (о)
х2(0)

х0 =

*Д°).

Рассмотрим решение поставленной задачи с использованием пре¬
образования Лапласа. Иные способы решения будут приведены в пп.
6.3 и 6.5.

Преобразовав по Лапласу дифференциальные уравнения (6.59),
(6.60), получаем:

[/>IX(/>)-X0] = AX(/.)+BU(/>);

Y(p) = CX(/>)+DU(/>).

Откуда

X(p) =(pl-A)-' BU(/>)+(/>I-A)-' Х0;

Y(/>) =CX(p)+ DU(/>).

Переходя к оригиналам, получаем:

(6.64)

(6.65)

*1(0

=Х-1[Х(р)]= Г1{[р1-АГ1Ви(р)}+Г1{[/.1-А]Х„}.(6.66)
*Л0.

х(0=
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Подставив X(t) в (6.60), определяем сигналы Y(/) на выходе систе¬
мы.

При нулевых начальных условиях второе слагаемое выражения
(6.66) равно нулю.

Тогда

Y(p) =C[/>I-A] 1 BU(/>) + DU(p)=jc[pI-A] 'B+D}U(P)
= W(p)U (p),

и матричная передаточная функция системы, которая уже была вве¬
дена в начале этого параграфа, определится выражением

(6.67)

W(/?) = C[/?I-A] lB+ D. (6.68)

Пример 6.7*
Для модели системы, приведенной в примере 6.6, определить матричную

передаточную функцию. В соответствии с данными примера 6.6

0 1
'

1 -2

0 1 0

-2 -3 0

0 0-1

"0 0 Г
10 0’

; D =[о о].; в = ; с=А =
2

Тогда

"1 0 0] Г 0 1 0"
[pl-A]= р 0 1 0 - -2 -3 0

0 0-1

р -10

2 р+3 0

0 0 р+10 0 1

Получим присоединенную матрицу Adj\p\ — А].
Алгебраические дополнения для элементов матрицы pi — А имеют вид:

1+1 р+ 3 0

0 р +1С11 =(->)

С.2=(-')1+2я

=(р+з)(р+1);

° , =-2(я+1);о р+1

*Читателю, не знакомому с понятиями «алгебраическое дополнение» и
«присоединенная матрица», рекомендуем ознакомиться с приложением 3.
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г -(П|+з2с.з-Н)
0

2+1 О

О р +1

=0;
о

=р+1;

0
=р(р+1);

С21=(-1)

2+2 РС22=(~1)

С2з=Н)2+3о

С31=(-1)3+1

О р+1

-1

-1

р + 3 о

° =0;о
3+2 Р

С32 -(-!)

- / , \3+3 Р
сзз=(-1) л

2

-1 2= р +Зр+ 2.
2 р+3

Присоединенная матрица

(/> + 3)(/> +1) /> +1

Аф[р1-А]=[Су]Т= -2(р+ \) р(р +1)
О

О

2О О рА+Зр+ 2

Определитель матрицы [р\ — А] равен:

|?1-А|= (р+1)(я+Зр+ 2).
Тогда

Р + з 1
О

2 2р + Зр+ 2 р +Зр+ 2

|

= Ая1-А]1 J |Р1-А|
2 Р О (6.69)2 2р + 3/М-2 р +3/?+ 2

1
О О

р+1
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Подставив (6.69) в (6.68), получаем матричную передаточную функцию:

Р + 3 I
1- 0
р2+Зр+ 22pz+3p+ 2 'О 1

'

1 -2
'О О Г
1 О О

2 РW(p) = О
2 2р +3/7+ 2 р +3/7+ 2

1 2
1

О О
/7 +1

(6.70)1 2

/7 +1 /7 +1

11

р2 +3/7 + 2 .Р + 2

Этот же результат можно было получить непосредственно из данной систе¬
мы дифференциальных уравнений (6.61). Действительно, при нулевых началь¬
ных условиях

РУ\{р)+У\{р) = щ{р)+ Ъи2(р)\

Р2У2{р)+3РУ2(р)+ 2У2(р) = и1(р)+ и2(р) + Р“2(р)-

Тогда из первого уравнения при ы2 = 0

РУ\{р)+У\{р) = Ч(р) и

У\(Р)= 1

щ(р) Р+1’
Щ\ (р) =

при w, = 0

л(/>)_ 2

«2 (Р) Р + {
Щ2 (Р) =

Из второго уравнения при «2 = 0

Р2У2 (р)+ ЪРУ2 (Р) + 2у2 (Р) = и1 (Р) и
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У2(Р) _
щ{р) р2+Ър + 2

1
W2X{p) =

при и, = О

Р2У2 ( р) + 3РУ2 ( р) + 2У2 ( р) = и2 (р) + Ри2 ( р) и

Р+1 1
W22(p) = р2+Ър+ 2 Р+ 2

Таким образом, получены все элементы матрицы W(p). Вместе с тем, как
будет показано ниже, использование преобразования Лапласа в ряде случаев
может привести к неполным выводам.

К этому вопросу вернемся в п. 6.3 после введения таких суще¬
ственных свойств системы автоматического управления как наблю¬
даемость и управляемость.

Для определения этих понятий требуется преобразовать стан¬
дартную форму в нормальную форму уравнений состояний. Это пре¬
образование связано с необходимостью рассмотрения ряда допол¬
нительных математических сведений, которые приведены в при¬
ложении ПЗ.

6.3. Нормальная форма уравнения состояний линейной
стационарной системы

Стандартной формой уравнения состояний линейной стационар¬
ной системы являются выражения (6.59) и (6.60). При условии, что
характеристические числа матрицы А различны, проведем преобра¬
зование стандартной формы к нормальной, используя рассмотрен¬
ное в приложении 3 преобразование подобия. Пусть М — модальная
матрица. Обозначим

Х= MZ.

Подставим это выражение в уравнения (6.59) и (6.60) стандартной

формы. Тогда

MZ=AMZ+BU;

Y=CMZ+DU.
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Умножим обе части первого уравнения слева на матрицу М 1, об¬
ратную модальной.

Учитывая, что М-1 = Е, a EZ=Z , получим:

IZ=M AMZ+M BU.

В соответствии с (п. 3.20)

Z=AZ+M- BU,

где L — диагональная матрица, элементы которой являются характеристичес¬
кими числами матрицы А.

Отсюда нормальная форма уравнений состояний имеет вид:

(6.71)Z = AZ + BHU,

Y-CH Z + DHU,

где Вн = М-1В; Сн = CM; DH = D.

Особенностью нормальной формы является то, что все диффе¬
ренциальные уравнения «развязаны» относительно фазовых пере¬
менных (переменных состояния) z1? z2, ...,zw. Иначе, каждое из п
дифференциальных уравнений имеет вид:

zi=Xizi+fi, / =1,2,

гдеfj— вынуждающая функция, действующая на г-ю фазовую переменную (пе¬
ременную состояния).

Это наглядно видно, если записать уравнение (6.71) в разверну¬
той форме:

••• 0

0 Х2 0 ••• 0
ч ч и1

z2 z2 и2
+ вн

о ... хно оzл z« ип
(6.72)

У\ Ч щ
У2 z2 и2= СН + DH

Уп Zn ип
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В частном случае односвязной системы моделирующая схема
уравнений состояний, полученных в нормальной форме, приведена
на рис. 6.9.

Как указано в приложении 3, при наличии кратных корней ха¬
рактеристического уравнения квадратная матрица, вообще гово¬
ря, не преобразуется к диагональной форме. Вместе с тем случай
кратных корней при моделировании в технической системе соответ¬
ствует определенному сочетанию параметров этой системы. Учиты¬
вая, что в реальных условиях параметры технической системы зада¬
ют с определенной погрешностью, случай различных корней харак¬
теристического уравнения является достаточно общим.

Уравнения состояний в нормальной форме дают возможность лег¬
ко определить понятия управляемости и наблюдаемости системы [11].

Очевидно, что /-я фазовая переменная (переменная состояния)
не управляема, если входные сигналы не оказывают на нее ника¬
кого воздействия. Это соответствует наличию нулевой /-й строки в
матрице Вн. Неуправляемость /-й фазовой переменной означает, что
ее изменение зависит от начальных условий и внешних возмуще¬
ний и не зависит от сигнала управления.

Если изменение какой-либо фазовой переменной не влияет ни на
один выход системы, то эта фазовая переменная ненаблюдаема. На¬
личие нулевого столбца в матрице Сн, делает систему ненаблюдаемой.

ь\п — +I J С,н

X

К+
J СпнЬпп

к

d

Рис. 6.9. Моделирующая схема уравнений состояний, полученных в нормаль¬

ной форме

185



Условия полной наблюдаемости и управляемости, модель кото¬
рой представлена в нормальной форме сводится к следующему: пол¬
ная наблюдаемость — отсутствие нулевого столбца в матрице Сн,
полная управляемость — отсутствие нулевой строки в матрице Вн.

Пример 6.8
Рассмотрим двелинейные подсистемы. Модель первой подсистемы имеет вид:

и Vi - dii]-я+ Уу=2щ+—к
dt dt

Модель второй подсистемы:

dy2
+ 2у2 = и2.

dt

В этих уравнениях и у и и2 — сигналы управления, уу и у2 — сигналы на вы¬
ходе соответственно первой и второй системы.

Подсистемы объединены. Выход первой является входом второй, т.е. и2=У\-
Выход объединенной системы у = у2 — у,. Требуется определить, является ли
объединенная система наблюдаемой и управляемой.

Перейдем вначале к уравнениям состояний для первой подсистемы. Моде¬
лирующая схема получается после разрешения уравнения системы относитель-

У\-щ: уу-йу--уу + 2щ.
Тогда моделирующая схема имеет вид, приведенный на рис. 6.10.
Эта схема эквивалентна схеме, приведенной на рис. 6.11.

но

«1

т
2

У\ ~ Щ У1Т У\ —J

Рис. 6.10. Схема моделирования

и\

+
У\У\~и1 +J

I
- Ху X]

Рис. 6.11. Схема моделирования
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Обозначим выход интегратора через Xj, щ
__

при этом последнее уравнение преобразует- —
ся к виду: — '

У2Уг J

х2 X2

Х\ = -Х\ + щ;

У1=х{+щ.
2

Для второй подсистемы У2 = ~2У2 + «2 и Рис. 6.12. Схема моделирования

моделирующая схема имеет вид, приведен¬
ный на рис 6.12.

Обозначим выход интегратора через х2, при этом уравнение состояний имеет
вид:

х2 — ~2х2 + и2 \

У2 ~х2-

Объединим обе подсистемы, как это показано на рис. 6.13.
Получим модель системы в форме уравнений состояний:

Xj = -Xi + щ;

х2 = -2х2 + XJ + «!;

y =x2-xl-ul.

В стандартной матричной форме:

-1 01ГХЛ Г11
1 -2J|_x2J + |_l_

*1 щ;
х2

-1Xj
1] + о Wl-

х2

U\

++
х2Xj У\=U2 Х2=У2 +Xl <8я<8я- 1j

++

t
2

Рис. 6.13. Объединенная схема моделирования
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Перейдем к нормальной форме. Определим вначале характеристические
числа матрицы А:

(-1-М о
=0,

(-2-А.2)

откуда (1+ + = 0 •

Характеристические числа A.j = -1; Х2 = -2.
Присоединенная матрица

с\\ С2\ _Гя + 2

С\2 С22_

Adj[Xl-A\=Xi =

0
Adj[M-A]=

Х +1 ’1

1 °’.
1 0_|’

'о о '

1 -1
Adj[Xl-A]

Х=А,2

Модальная матрица

01 011AdjM
и М 1 =М =

1 1 -1 1

Матрицы

1 01ГП 1IВн = М"‘В = оГ1 1

'1 o'
1 1Сн =СМ =[-1 1] = [0 1];

DH=D =
0

Матрица Вн содержит нулевую строку. Следовательно, объединенная сис¬
тема неуправляема. Матрица Сн содержит нулевой столбец. Следовательно,
объединенная система ненаблюдаемая.

Таким образом, объединение систем, каждая из которых полностью наблю¬
даема и управляема, привело к ненаблюдаемой и неуправляемой системе.

Рассмотрим этот же пример, используя преобразование Лапласа. Переда¬
точная функция первой подсистемы имеет вид:
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Р+2W\{p) =
P+1

Передаточная функция второй подсистемы

1
Щ(р)=

р+ 2

Изображение y{p) сигнала на выходе системы

У(Р) = У2 (Р)~У\ [Р) = w2 (Р)У\ (Р)-У\ {р) =
р+1 р + 2

р+ 2 р+1

Следовательно, передаточная функция объединенной системы равна —1.
Этот результат получен потому, что были проведены сокращения в числителе и
знаменателе передаточной функции. Корни многочлена числителя передаточ¬
ной функции назовем «нулями». Корни многочлена знаменателя передаточ¬
ной функции назовем «полюсами». Сокращение числителя и знаменателя пе¬
редаточной функции на сомножители, в которые входят одинаковые нули и
полюса, привело к результатам, не позволяющим анализировать процессы в
системе.

Рассмотрим далее случай, когда не все корни характеристичес¬
кого уравнения различны, иначе — имеются кратные корни харак¬
теристического уравнения. Пусть преобразующая матрица Т полу¬
чена (см. приложение 3). Тогда, обозначив X = TZ и подставив это
выражение в уравнение (6.59) и (6.60), получаем:

{Щ{р)-Щ(р)щ(р)= и(р) = -и(р).

(6.73)TZ = ATZ + BU;

(6.74)Y = CTY + DU.

Откуда, умножая слева обе части (6.73) на Т

Т-1Т = I, IZ = Z, а Т_1АТ = J — жорданова нормальная форма мат¬
рицы А (см. приложение ПЗ), получаем:

-1, учитывая, что

(6.75)

(6.76)

Z = JZ + Вн U;

Y = СХ + DU,

где Вн = Т_1В; Сн = СТ.
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Таким образом, при наличии кратных корней характеристичес¬
кого уравнения модель системы приводится к форме уравнений
(6.75), (6.76), содержащей жорданову матрицу.

6.4. Определение реакции линейной стационарной системы
на заданный входной сигнал

при использовании матричных моделей

В этом пункте реакция системы на заданный входной сигнал бу¬
дет определяться на основе использования математического аппа¬
рата теории матриц [12], в отличие от операторного метода (метода
на основе преобразования Лапласа), описанного в п. 6.2.

Пусть модель системы, имеющей г входов и / выходов, определе¬
на в стандартной форме:

(6.77)Х = AX + BU;

(6.78)Y = СХ + DU.

Квадратная матрица А имеет порядок п. Вектор-столбец входных
сигналов задан:

"iM
«2 (Ои=

ur(t)

где г< п.

Начальные условия заданы:

*l(°)
*2(0)х(0) =

*»(°)

Требуется определить реакцию этой системы в общем случае при
ненулевых начальных условиях на заданные входные сигналы u{(t),
u2(t), ..., ur{t), т.е. необходимо получить вектор-столбец:
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У\(>)
Уг(?)

Y =

л (О

Вектор Y в соответствии с уравнением (6.78) является линейной
комбинацией векторов X и U. Следовательно, Y просто вычисляет¬
ся при заданном U, если известен X. Поэтому решение задачи сво¬
дится к решению системы неоднородных дифференциальных урав¬
нений (6.77) относительно X в общем случае при ненулевых началь¬
ных условиях.

Поставленную задачу будем решать двумя способами, первый из
которых не использует понятия фундаментальной матрицы систе¬
мы, второй — с помощью фундаментальной матрицы. Второй спо¬
соб будет описан в п. 6.5.

Решение неоднородного дифференциального уравнения опреде¬
ляется суммой общего решения соответствующего однородного
уравнения и частного решения неоднородного. Общее решение од¬
нородного уравнения при ненулевых начальных условиях опреде¬
ляет свободную составляющую движения системы, частное реше¬
ние — вынужденную составляющую.

Наметим план решения задачи первым способом:

— определим Х(/) при различных характеристических числах мат¬
рицы А и ненулевых начальных условиях, когда входные сигналы
отсутствуют. Иными словами, найдем свободную составляющую дви¬
жения системы;

— преобразуем полученное выражение Х(/) с учетом того, что 2к<п
корней характеристического уравнения могут быть комплексными;

— определим Х(/) при различных характеристических числах мат¬
рицы А, ненулевых начальных условиях и заданных входных сиг¬
налах;

— определим Х(0 при наличие кратных характеристических чи¬
сел, нулевых начальных условиях и заданном входном сигнале.

Отыскание X(t) при ненулевых начальных условиях и отсутствии
входных сигналов сводится к решению системы однородных диф¬
ференциальных уравнений
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(6.79)Х = АХ,
где

*1 *1

х= *2 , х= *2

хп хп
А — квадратная матрица порядка п с элементами ау.
Решение системы уравнений будем искать в виде:

Xt. Xt. Xt (6.80)X] =/Ц]С ; x2=m2e ;...; хп-тпе .

Подставив (6.80) в (6.79), получаем:

т{к

т{к
т\

т2ех'=А сЛ'. (6.81)

_т„\

Сокращая обе части этого уравнения на и перенося все члены
в одну сторону, получаем:

тп

т\

т2 0, или [XI — А] •М = 0.[А1- А] (6.82)

тп
Условием нетривиального решения системы линейных уравнений

(6.82) является равенство нулю определителя характеристической мат¬
рицы А. Пусть все корни характеристического уравнения (характери¬

стические числа) Xj, Х2, ..., Хп действительны и различны. В этом слу¬
чае система линейных однородных алгебраических уравнений (6.82)
относительно неизвестных т 2, ..., тп для каждого X,- имеет вид:

[Л/1— А]- =0, (6.83)
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где

m\i

m2i
mi =

m3i

где /=1,2, ..., n.

Решением этой системы являются столбцы модальной матрицы,
каждый из которых получен при фиксированном ХДсм. Пример П3.2
приложения 3).

Пусть модальная матрица вычислена:

Щ 1 т\2

т2\ т22

т\п

т2пм =

тп1 Ща тпп

Тогда решение системы дифференциальных уравнений (6.79)
имеет вид:

*i(0
*г(0

тп тП т\п

т21 т22 т2пе\< & Л', (6.84)+...+ап+ ос2= а1

*«(0. тп\ тп2 тпп

т.е.

= |, = 1» 2> •••>«> (6.85)
j=1

где ау — произвольные постоянные.

Полученное решение неоднозначно. Это связано с тем, что ум¬
ножение столбцов модальной матрицы на постоянное число приво¬
дит к новым решениям системы однородных линейных уравнений.
Коэффициенты а- могут быть найдены, если известны начальные
условия: хяО), х2(0), ..., хЛ(0). Тогда при / = 0 из (6.84) следует:
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*l(°)
x2(0)

mu ™\2 m\n

m2\ m22 m2n= «l + oc2 +...+ an
(°) mn\ mn2 mnn

В более компактном виде

«1

а2х(о)=м

ап
Умножив обе части этого выражения на М-1 — обратную модаль¬

ную матрицу, получаем решение системы линейных уравнений от¬
носительно а •:

«1

<*2 м_1х(о).

ап
Откуда

ОС; =<//Jt(0)>,
где ri — /'-я строка обратной модальной матрицы.

Подставив а,- (/ = 1, 2, п) в (6.84), получим решение однород¬
ной системы линейных уравнений при ненулевых начальных усло¬
виях.

xi (t) = У;< Г/х (0) >mlie‘jt , / =1, 2 (6.86)

7=1
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В матричной форме

X = Yl<rJX(0)>mjeXjt, (6.87)
j=1

где rrij — j-й вектор-столбец модальной матрицы.

Эти выражения в разных формах определяют свободную состав¬
ляющую переходного процесса при заданных ненулевых начальных
условиях.

Пример 6.9
Определить свободную составляющую движения системы, матрица А и на¬

чальные условия которой заданы:

О 1

_3
; *i(o); х2(о).А-

-2

Характеристическая матрица системы имеет вид:

"X -I
[A.I — А] =

X + 3

Откуда получаем характеристическое уравнение системы:

Х2+ЗХ + 2 = 0.

Решив это квадратное уравнение, получаем характеристические числа сис¬
темы:

Xj=-1; Х2=-2.
Получаем далее модальную матрицу системы. Выпишем С- — соответству¬

ющие алгебраические дополнения матрицы [XI — А]:

Cn = X + 3; Cj2 = —2; С2\ = 1; С22 = X.

Тогда присоединенная матрица

"Х + 3 ~2~\Т Гя + 3 Г
-2 X

А<#[Х1-А]=
X1

При Xj = —1

Хя +3 1

-2 X

2 1

-2 -1I
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При Х2 = —2

Х2 +3 1 1 1

-2 А,2 -2 -2

Выбираем по одному столбцу из каждой присоединенной матрицы и полу¬
чаем модальную матрицу М:

1 1
М=

-1 -2

Найдем обратную к модальной матрицу:

м-'=М.

|М| = —2 + 1 =1;

Си 2; С12 - 1; С21 1; С22- 1;

-2 1?
-1 1

-2 -11
AdjM =

1 ’1

2 1М-1 =
-1 -1

Откуда получаем векторы гх и /*2:

йП = г2 =
-1

Определяем слагаемые < луJC(0) > выражения (6.87):

2х,(0) + х2(0)1
-2хх (0) — л:2 (0)

е-21_ -*i(0)-*2(°)~l -2/

2хх (0) + 2х2 (0)J

_ij Lÿ2(0)J L-l

—1 x2 (0) —2

<rlx(0)>m]ek't = -te

1<r2x(<d)>m2ex* =

Подставив эти выражения в (6.87), получаем:

(я) =[2ÿi (°) (о)]я 'Нз(°)+х2(о)]е 2/; (6.88)
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*2(0 = -[2*l(0) + x2(0)]e ' +[2x!(0) + 2x2(0)]e 2t. (6.89)

Рассмотрим ряд частных случаев. Пусть вектор начальных условий совпа¬
дает по направлению с характеристическим вектором:

*,(0)1 Г I
'

*2 (0)J L-lJ’/Я| =

где а — действительное число.

Тогда

Xj(0) = а; х2(0) — -а.

Подставляя эти значения в (6.88) и (6.89), получаем:

X] (/) = а еч\
x2(t) = -т-а е .

-21При этих начальных условиях составляющая решения е
Пусть далее вектор начальных условий совпадает по направлению с харак-

ненаблюдаема.

теристическим вектором т2 системы, т.е.

х,(0)

х2 (0) = Р-2’
где |3 — действительное число.

Тогда

xj(0) = Р; х2(0) = -2Р.
Подставляя эти значения в (6.88) и (6.89), получаем:

*i(0=Pe 2/’
х2 (/) = -2Р e~2t .

В этом случае ненаблюдаема составляющая решения е~Т.

Если среди характеристических чисел имеются комплексно-со¬
пряженные, например, Aj = сц + у(3 1 и = (X] +ypj, то, как уже ука¬
зывалось в приложении ПЗ, характеристическому числу в первом

столбце модальной матрицы соответствует вектор т\ = m{ + jm" ,
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где

т[\ +jm[{
Щ\+т2\

т{ +jm[=

mnl+m'nl

Характеристическому числу Х2 во втором столбце модальной мат¬

рицы соответствует вектор т2=т2 + jm2.

Можно показать, что матрице М-1, обратной модальной мат¬
рице М, вектора строки г j и г2 удовлетворяют следующим соот¬
ношениям:

ч 4,i'+4'i';'5=b,+yb';
< r{m[ >= 1; < г”т{ >= 0;

< г{т[ >= 0; < r{m[>=1.

Получим далее свободную составляющую решения системы п-
го порядка, имеющей к пар комплексных характеристических чи¬
сел И],Х2 =Х] Д3Д4 =Л'2,...,к2к-\,к2/(
ных: Х2к+\, Ия. Комплексные характеристические числа
имеют вид:

(6.90)

*
= к2к~\ и(п — 2к) действитель¬

на -а1 + yPi; Х2-щ-7Р1; Н3 -а2 + j\32;

Н4 =а2 -у'Р2; ...;к2к-\ =ак + j$k\ Х2к =ак ~$к.

После подстановки комплексных характеристических чисел в
выражение (6.87) и алгебраических преобразований с учетом (6.90)
получаем:

к
Х(/) = <?а,/{ [< г-Х (0) > cos P/f + < rf X (0) > sin (3,/] •/я,- +

P;/-</}/X(0)>sinP//]-m/'}+ </;X(0)

/=1

(6.91)
V+[<nX(0) >cos >e mi •

/=2fc+l
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Пример 6.10
Определить свободную составляющую движения системы, заданной мат¬

рицей А и вектором начальных условий Х(0):

*i (°)

х2 (0)
о

; Х(0) =А =
-2 -2 ’

Характеристическая матрица имеет вид:

'X -1

2 Х + 2
[Л1-А]=

Откуда получаем характеристическое уравнение системы:

Я(Я + 2) + 2 = 0; Я,2 + 2А, + 2 = 0.

Характеристические числа системы получаем из решения этого уравнения:

Х\ --l+ j; Я.2 --1-у.

Присоединенная матрица системы:

Ai Сп]т
Сц С22_

где Cjj — соответствующие алгебраические дополнения;

Сц=1 + 2; С12 — —2; С2] = 1; С22 = 1.

А#[Я1-А]=

"

Х + 2 Г
-2 X

А<#[Я,1- А]=Тогда

При Я} = -1+ j
'

Х + 2 Г
-2 X

l+j 1

-2 -l+j

При Х2 = —1 + j

".Х + 2 1“| _ f1-у 1

-2 X -2 -1-/J
Выбирая из каждой матрицы по столбцу с соответствующими комплексно¬

сопряженными элементами, получаем модальную матрицу:

l + j 1-у

-2 -2
М =
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Найдем обратную модальную матрицу:

|М|= -2(1+ у)-(-2)(1-у) =-4у;

2 Т J~2 -!+/.
2 1+ 7 j

-2
А#М =

L-i+y 1+л1
ly-i
4 4

-у —у-—
2 4 4

--у
Ad/M_ 1 Г-2 -1+ У
|М|

"

4у (_ 2 1+ У
2М-1 =
1

Откуда

1 1— тУ 2J2
П = ; '2 =

1 1 1 1

4
+ 4У4 4

В соответствии с (6.90)

0 1
1 1

т'= -2 ’ тН 0’ 1 ; r{1
2 L2J

Тогда

еа\{ [ÿ<r1,X(0)>cos (31?+</i'rX(0)>sin =

Т1гг0 1Гг х,(0)

х2{0)
х,(0)
х2(0)

1—I sin tcos t +1 1-e
-2

L 2j L2j

1 1
--x2 (O)cos ? + Xj (0) +— x2 (O) sin?

x2 (0)cos ?-[2x1(0) + x2 (0)]sin t
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е®1' [</р((0)

frif г

>cos P1/-<r|'X(0)>sin p|f]mf=

rofrx, (0)'
Ы°)_

*1(0)

fl Ы0)
1-/ sin /cos /- 1=e
0

1 1
_e~t *i(0) cos/ +— x2(0) cos / + — x2 (0) sin /

0

Подставив эти выражения в (6.91), получаем:

X\(t) = e '[JCJ(0) (sin / + cos /) + х2 (0) sin/];

x2(/) = e_r [x2(0) (cos /-sin /)-2JCJ(0) sin /].

Для решения системы линейных неоднородных дифференциаль¬
ных уравнений (6.77) преобразуем вначале составляющую BU. В об¬
щем случае BU — вектор-столбец с числом элементов не более п,
каждый из которых является линейной комбинацией управляющих
воздействий uft), i= 1,2, Очевидно, что

(6.92)ви = мм_1ви,

где М — модальная матрица системы.

Тогда

</}BU>

<r2BU >1м_,ви = (6.93)

<глВи >

где rt-, / = 1, 2, ..., п — /-я строка модальной обратной матрицы М-1. Совокуп¬
ность этих векторов, как указывалось выше, является двойственным базисом
системы.
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С учетом (6.92) и (6.93)

</]Ви >

<r2BU >

<rjBU>

<r2BU >
тп тп ••• т]п

Щ\ т22 "• т2пви = м

<r„BU> <r„BU>Щ\ тп2 ••• тпп
п

2>„<,;ви>
1=1

п

1>, </;ви п

=
> (6.94)

/=1
/=1

п

i=1

где m;y — элемент модальной матрицы, стоящий ву-й строке и /-м столбце;

mi — /-Й столбец модальной матрицы.

Подставив (6.94) в (6.77), получаем:

п

Х = АX + 2<'/BU>mr (6.95)
/=1

Решение этой системы неоднородных дифференциальных урав¬
нений при ненулевых начальных условиях и различных характерис¬
тических числах матрицы А имеет вид:

x(t) = y'ÿ<rjX(0)>eÿitmi + (6.96)
/=1 Oi=l

Здесь первое слагаемое совпадает с выражением (6.87) и опреде¬
ляет свободную составляющую движения системы. Второе слагае¬
мое — интеграл свертки, определяющий вынужденную составляю¬
щую движения системы.
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До сих пор не рассматривался случай кратных корней характе¬
ристического уравнения. При моделировании технических систем
наличие кратных корней соответствует определенному набору па¬
раметров системы. Очевидно, что эти параметры в реальных усло¬
виях имеют разброс. Следовательно, случай кратных корней с тех¬
нической точки зрения достаточно редкий. При использовании
преобразований Лапласа решение дифференциальных уравнений
при наличии кратных корней требует применения соответствую¬
щей формулы (3.13) преобразования изображения в оригинал. Для
матричной формы уравнений (6.77) решение системы будем искать
при наличии характеристических чисел X j кратности v, Х2 кратнос¬
ти s остальных / характеристических чисел ..., Хс+2 кратности
один. Очевидно, что v + s + с = п, где п — порядок системы. Внача¬
ле определим свободную составляющую переходного процесса.
Решение задачи состоит из следующих шагов:

— введем линейное преобразование неизвестных X в Z; при этом
заданная система дифференциальных уравнений (6.77) изменится
так, что матрица А приведется к жордановой нормальной форме J;

— решим систему дифференциальных уравнений относительно
неизвестных функций Z;

— перейдем обратно от Z к X и получим общее решение заданной
однородной системы дифференциальных уравнений;

— при заданных начальных условиях определим произвольные
постоянные, входящие в решение.

Как известно из приложения 3, матрица А приводится к жорда¬
новой нормальной форме J путем линейного преобразования неизве¬
стных в соответствии с выражением (3.19). Введем новые неизве¬
стные Z:

(6.97)X = TZ,

где Т — преобразующая матрица, которая подробнее будет рассмотрена в п. 6.5.

Подставив (6.97) в заданную систему уравнений (6.77), (6.78), по¬
лучаем:

TZ = ATZ + BU. (6.98)

(6.99)Y = CTZ + DU.

Умноживслева обе части уравнения (6.99) наТ-1и обозначив СТ=
= Сж; Т-1В = Вж, записываем:
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(6.100)Z — JZ + BxUj

(6.101)Y = C*Z + DU,

где J = T !AT — жорданова нормальная форма матрицы А (см. приложение 3),
которая имеет вид:

X, 1 0 0 0 -
0 Xj 1 о о - -
0 0 Xj 1 о - о

о
о

о

*10 0 0 0 0

Х2 1 0 0 -
О Х2 1 0-0

О 0 Х2 1 - о

о

J = (6.102)

О 0 0 0 ... х2
о я3

я4

Первая жорданова клетка размерности п, вторая — s, остальные с
размерности один, что соответствует с различным характеристичес¬
ким числам. Для определения свободной составляющей переходно¬
го процесса в системе автоматического управления рассмотрим сис¬
тему однородных дифференциальных уравнений

(6.103)Z = JZ.

В соответствии с видом матрицы J система (6.103) представляет¬
ся тремя группами дифференциальных уравнений, независимыхдруг
от друга.

Первая группа уравнений содержит неизвестные функции z1?
z2, ..., zy. Уравнения этой группы в соответствии с (6.102) и (6.103)
имеют вид:
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dz\ -Xlz1+z2;
dt

dz2 _
X\Z2 +z3;

dt
(6.104)

dzv-l _
Vv-l +ZV’

dt

dzv _
Xxzv.

dt

Вторая группа уравнений содержит неизвестные функции zv+1, z

v+2, ...,zv+5. Уравнения этой группы аналогичны (6.104):

dzk+\ -ÿ2zk+\+zk+2’
dt

dzv+2
+zv+3’

dt

(6.105)

dzv+s-1
+zv+s’’

dt

dzv+s _
A2ZV+5'

dt

Третья группа уравнений содержит с функций от zv+5,+1 до zn
включительно. Так как эта группа соответствует различным харак¬
теристическим числам матрицы А, то каждое из уравнений этой
группы содержит только одну неизвестную функцию:

dz,
~ mzi’ (6.106)

dt

i= v + 5+1, v + s+ 2, p, = 3, 4, ..., c+3.
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Начнем решение с первой группы уравнений. Введем новые пе¬
ременные Sj, i = 1, 2, v так, что

Z/ =eX'‘S
Тогда группа уравнений (6.104) примет вид:

dS{ dS2 . AM А= S2; = S3,...; A; = 0.
dt dt dt dt

В результате интегрирования этих уравнений в последовательно¬
сти от Sk до Sx получим:

Sv-Cu Sv_x-Cxt + C2, ...;

tv~2 fv-3
s2=c{ +c2 +...+ Cv_2t + Cv_x;

(v-2)! (v-3)!

tv~2-ltv
St=Q (V-1)!'+C2(V-2)!+...+ Cv_xt + CV,

где Cx, C2, Cv — постоянные интегрирования.

Возвращаясь к переменным, zi будем иметь:

zv=c/>'; zv_l=eX't(Clt + C2),...;

z\ =eXl* Q
tv-i tv~2

(6.107)+ C2 +...+ Cv .
(v-1)! (v-2)!

Решение второй группы уравнений аналогично. Результат реше¬
ния этой группы уравнений отличается от (6.107) только тем, что

Хх заменяется на А,2, нумерация z;- и С;- начинается с / = v + 1 и за-

tv~jk-jt
канчивается i = v + s. Функции

j= 1, 2, ..., 5.

Рассмотрим решение любого уравнения из третьей группы. Из
(6.106) следует, что

заменяются на , где
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dZj
= Xmdt.

zi
Откуда

In zj — hmt + Cj ,

z. =eKt+c* =c.eK\

где Cj = eC‘ — постоянная интегрирования;

/ = v + s + 1, v + s + 2, m = 3, 4, c + 3...

На этом этапе получено общее решение однородной системы
дифференциальных уравнений относительно функции Zj, z2, ...,zn.
Выражения исходных фазовых переменных х,- получаем как ли¬
нейную комбинацию функций г,- в соответствии с выражением
(6.97). Постоянные интегрирования определяются при известных
начальных условиях хДО) из системы линейных уравнений:

х,(°)
*2(0)

zl (°) С1

z2(0) С2=т =т

хп(°) z«(°) С„

Откуда

*1(о)
*2(0)

С|

С2 = Т“

*«(о)С„

Свободная составляющая переходного процесса на выходе си¬
стемы получается как линейная комбинация функций хД7), /= 1,
2, ...,п в соответствии с уравнением Y = СХ либо Y = CTZ = CXZ.

Для определения реакции системы на заданный входной сигнал
найдем решение неоднородной системы дифференциальных урав¬
нений (6.100). В правой части этого уравнения произведение мат¬
рицы Вж = ВТ на вектор-столбец управлений U:
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h\ hi hn
h\ h.2 ••• hn

ЩЩ

u2 u2вжи-
K\ Ki ••• Kn un un

где и* =< [b*\ b*2 ... Aw ) ( wl u2 un)>, i=\,2, ...,n.

В правой части каждого дифференциального уравнения групп
уравнений (6.104), (6.105) и (6.106) дополнительно появляется соот¬

ветствующее слагаемое и* . Для первой группы i = 1, 2, ...,v; для вто¬

рой — /' = v + 1, v + 2, ..., v + 5; для третьей —i = v + s+ 1,v + s +
+ 2, ...,п. Непосредственной подстановкой можно проверить, что
частным решением системы дифференциальных уравнений пер¬
вой группы является:

JV4ÿ Tÿ(x)dx;
о о

ZV = ’ zv-l

V—1t
М>-т)(яя)

(v-1)!
Z| = j

о
и\ (x)flfx. (6.108)

Решение второй группы уравнений аналогично. Результат отли¬
чается только тем, что A.J заменяется на \2, нумерация zi начинается

с / = v + 1 и заканчивается i = v + s, функция

ts~J

Частное решение любого уравнения из третьей группы имеет вид:

tv~J
заменяется на

(v-y)!
гдеу = 1, 2, ..., 5.

t

хZi = е

о
/ = v + s + l, v +5 + 2,...,«; т = 3,4,...,с+ 3.
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Переход к фазовым переменным в соответствии
с выражением (6.97). Сигналы на выходе системы определяются в
соответствии с (6.99). Результатом решения системы является реак¬
ция системы, характеристическое уравнение модели которой содер¬
жит кратные корни, на совокупность заданных входных сигналов.

6.5. Определение реакции САУ на заданный входной сигнал
при использовании фундаментальной матрицы

Прежде чем приступить к решению задачи — определению реак¬
ции линейной стационарной системы на заданный входной сигнал,
введем понятие показательной функции от матрицы [12]. Обозна¬
чим эту функцию еи, где Н — матрица порядка п. Известно разло¬
жение функции е* в ряд Маклорена:

Л'2 Л* 1 х л:ех = 1+ — + —
1! 2!

+...+ — +... .
к\

Откуда

(-if ***2-х Л X X
е =1— + —1! 2!

Определим функцию ен через разложение ее в ряд Маклорена:

+...+ + ... .
к\

н г Н Н2 Н*еп =Е+—+— +...+-+...;
1! 2! к\

(6.109)

(-1)* Н*,-Н=я-Л+
М_2

1! 2!
(6.110)+...+ + ..•5

к\

где Е — единичная матрица размером п.

Производная от экспоненциальной функции еН/ по /‘находят по¬
членным дифференцированием (6.109):

нV— <?н' =Н + Н2/ + +... = Нен' = ен'Н. (6.111)
Л 2!
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Несложно показать, что

dk“н‘=Нкен'=ен>Нк. (6.112)
dtk

Решение линейного неоднородного дифференциального урав¬
нения равно сумме общего решения соответствующего однород¬
ного дифференциального уравнения и частного решения неодно¬
родного. Системе неоднородных дифференциальных уравнений,
заданных в матричной форме уравнениями 1-го порядка (6.77), со¬
ответствует однородное уравнение вида:

Х = АХ. (6.113)

Общее решение этого уравнения подобно решению скалярного
однородного уравнения первого порядка будем искать в виде ея*Ст,
где С* — вектор-столбец произвольных постоянных. После под¬
становки еяС* в (6.113) получаем:

eAtAC*=AeAtC*. (6.114)

Так как в соответствии с (6.111) сА/А=Аса?, то выражение (6.114)
является тождеством, и общее решение однородного дифференци¬

ального уравнения (6.114) имеет вид

Х0(1) =еА,с\

При t = О

*о(0) = С*.

Откуда следует, что С* — вектор-столбец начальных значений и

X0(/)= eA,X0(0).

Если известны значения X в момент /0, то

Х0(!) = еА('"'о)Х(!0) при />С0.

Матрица 0(/) = ея называется фундаментальной или переходной
матрицей состояний системы (6.1 13). Частное решение системы диф¬
ференциальных уравнений (6.77) при t > будем искать в виде:

(6.115)

(6.116)

210



x*,(<)=e(f— <b)F(/)x(<b); (6.117)

где F(/0) = 0.

Подставив (6.117) в (6.77), получаем:

0(r-?o)F(r)X(ro)+0(r-/o)F(/)X(ro)= A©(/-ro)F(r)X(ro)+ BU(r).

Откуда

[0(/-/o)-A©(/-fo)]F(OX(/o)+e(?-7o)F(Ox(<o)= BU(')-(6-118)

Так как 0(/— fy) является решением матричного уравнения (6.113),
то [0(/ — /0) — А0 — /Q)J — нулевая матрица и, следовательно,

©(r-/o)F(/)X(/o) = BU(0.

Умножив левую и правую часть этого уравнения на матрицу
0-1 (t — /0), получаем:

F(OX(/o) = 04(7-7O)BU(t).
Отсюда

F(/)X(/0)= |©-‘(Я-Г0)Ви(Я)Л.
*0

(6.119)

Подставив (6.119) в (6.117), получим частное решение неоднород¬
ного дифференциального уравнения:

t

Хчаст (0 =®(?-7o)J©“1(ÿ-7o)BUWÿ =
*0

t

= j*0(X-/o)0_1(X-/0)BU(X)flfX.
(6.120)

В соответствии с определением фундаментальной матрицы

0(/-ro)0“1(X-/o) = eA(' '°)е А(Х ,o)=eAW=©(f-X).
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Следовательно,

x(f)=e(/-f0)x(/0)+ |0(я-х)ви(А.)л, t>t0,

f0

(6.121)

где первое слагаемое — свободная составляющая, второе — вынужденная со¬
ставляющая решения системы уравнений (6.77).

Решение неоднородного матричного дифференциального урав¬
нения можно представить в несколько иной форме. Сложив общее

решение однородного дифференциального уравнения (6.1 13) с част¬
ным решением неоднородного в виде (6.120), получаем:

t

х(г) = 0(г-/о) х(?0)+ |0-1(я-яо)ви(«л =
'о

(6.122)t

ХЫ+ Je-A(M))BU(X)ÿ , t>t0.
'о

Эта форма решения будет использована в дальнейшем при рас¬
смотрении импульсных систем.

Подставив (6.121) в (6.78), получаем вектор-столбец сигналов на
выходе системы:

t

Y(t) = CQ(t-t0)X(t0)+ |С0(/-A)BU (X)dX + DU(/). (6.123)

'о

В иной форме Y(0 получаем при подстановке (6.122) в (6.78).
Решение системы линейных дифференциальных уравнений при

использовании фундаментальной матрицы в отличие от рассмотрен¬
ных ранее методов не требует знания характеристических чисел сис¬
темы. По существу приведено решение в виде сходящихся степен¬
ных рядов матриц.
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Глава 7. МОДЕЛИ ЛИНЕЙНЫХ ИМПУЛЬСНЫХ

И ЦИФРОВЫХ СИСТЕМ

7Л. Импульсные методы модуляции

Импульсными системами в соответствии с классификацией сис¬
тем управления, проведенной в главе 2, будем называть системы, в
которых циркулируют сиг¬
налы, подвергнутые одно¬
му из видов импульсной x(t)

модуляции [5, 15, 16, 41].
Дискретным называет- 6

ся сигнал, определенный
только для последователь¬
ности дискретных значе¬
ний независимой пере¬
менной t. Во многих сис-

ха(пГ)
АИМ

x(t)Т—

темах управления момен¬
ты времени, в которые
определен сигнал, равно
отстоят друг от друга на
временной интервал Т и
обозначаются t = tÿ+nT,
п — 0, 1, 2, ... В этом слу¬
чае сигнал зависит от
дискретной независимой
переменной п. Преоб¬
разование непрерывного
сигнала в дискретный на¬
зывается временной диск¬
ретизацией. Примеры ди-

хО Т 2Т ЗТ 4Т 5Т 6Т t

в

X

tО Т 2Т ЗТ 4Т 5Т 6Т

Рис. 7.1. Примеры дискретных сигналов:
а — амплитудно-импульсный модулятор; б —

скретных сигналов при- амплитудно-импульсная модуляция I-ÿÿ рода;
ведены на рис. 7.1. в— амплитудно-импульсная модуляция П-города
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Здесь непрерывный сигнал хя), показанный пунктирной ли¬
нией, подвергнут временной дискретизации путем использования
амплитудно-импульсной модуляции (АИМ). На вход амплитуд¬
но-импульсного модулятора (см. рис. 7.1, а) поступает непрерыв¬
ный сигнал x(t), на выходе — дискретизированный сигнал хд(пТ),
состоящий из последовательности импульсов, амплитуда которых
пропорциональна значению x(t) в моменты времени t = tÿ+nT,
п = О, 1,2, ... На рис. 7.1, б приведено использование амплитудно¬
импульсного модулятора (и следовательно, модуляции I рода): на
выходе модулятора — прямоугольные импульсы, амплитуда кото¬
рых равна значению x(t) в моменты времени t = tÿ+nT, п = 0, 1,2, ...
При АИМ второго рода вершины импульсов повторяют форму сиг¬
нала x(t) так, как это показано на рис. 7.1, в.

Временная дискретизация реализуется также путем использова¬
ния иных способов импульсной модуляции. В частности, в систе¬
мах автоматического управления э.п.с. применяется широтно¬
импульсная модуляция (ШИМ). При этом виде модуляции ин¬
формация о значении непрерывного сигнала формируется в дис¬
кретные моменты времени и определяется длительностью («ши¬
риной») прямоугольного импульса. Существует множество спо¬
собов реализации ШИМ. На э.п.с. обычно применяют интеграль¬
ную широтно-импульсную модуляцию (ИШИМ) и ШИМ с ли¬
нейной разверткой. Преобразователи непрерывного сигнала x(t)
в последовательность импульсов, длительность которых несет ин¬
формацию о сигнале x(t), называют широтно-импульсными мо¬
дуляторами. Способ построения модуляторов однозначно опреде¬
ляет математическую модель преобразования.

Широтно-импульсные модуляторы с линейнойразверткой. Струк¬
турная схема широтно-импульсного модулятора с линейной раз¬
верткой представлена на рис. 7.2, а. Она состоит из следующих
элементов: генератора пилообразного напряжения ГПН, порого¬
вого устройства ПУ, срабатывающего, когда напряжение на
выходе ГПН равно напряжению входного сигнала x(t), триггера-
формирователя ТФ, осуществляющего формирование модулиро¬
ванного импульса.

Триггер перебрасывается в состояние 0 при срабатывании ПУ и
в 1 на обратном фронте импульса ГПН. Из временной диаграм¬
мы, иллюстрирующей работу ШИМ с линейной разверткой (рис.

7.2, б), следует:
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x(t,) т
где А — амплитуда пилообразного импульса;

tj — й момент времени, в который выполняется равенство x(t) = г/рпн>
Т — период следования этих импульсов;
i — номер импульса.

Выражение в квадратных скобках представляет собой длитель¬

ность прямоугольного импульса на выходе ШИМ: tt -(i-l)T = /и. .

Поэтому можно записать:

Чп)
(7.1)ч =

А

а
Выход

%
х

ТФПУ

ГПН

б мгпнx(t)
X

А

h t

ПУ

t
ТФ

/и I t

Рис. 7.2. Структурная схема время-импульсного модулятора с линейной
разверткой (а) и временная диаграмма его работы (б)

215



Отсюда следует, что длительность импульса на выходе ШИМ с
линейной разверткой пропорциональна мгновенному значению не¬
прерывного сигнала в момент окончания импульса.

Условие x(t) > 0 не является ограничением, так как при -Вх <х<В2
на вход модулятора может быть подано постоянное положительное
смещение UCM > \ В\ . При этом

т т
(

= ~д\.Х ]= Х
’ (7.2)

TUсмгде 7и0 =
Л

Из описания принципа действия ШИМ следует, что необходимо
одно пересечение модулирующего сигнала с пилообразным напря¬
жением. Это накладывает ограничение на максимальную скорость
изменения V. входного сигнала: V{
нения пилообразного напряжения.

Широтно-импульсные модуляторы с интегральной широтно-им¬
пульсной модуляцией. Такой модулятор (рис. 7.3) содержит интегра¬
тор I, фиксирующее устройство ФУ и устройство управления УУ
ключами Ю — КЗ.

< Vn, где Vn — скорость изме-
та\ max

На первом такте преобразования за образцовое время to6 проис¬
ходит интегрирование модулирующего сигнала х> 0 (ключ К1 замк¬
нут, ключи К2 и КЗ разомкнуты). В начале следующего такта на вход
интегратора подается опорное напряжение UQn, имеющее знак, про¬
тивоположный х (ключ К1 разомкнут, ключи К2 и КЗ замкнуты).

Процесс интегрирования длится до тех пор, пока значение интег¬
рала не станет равным нулю. Фиксацию этого времени /и и формиро¬
вание импульса соответствующей длительности осуществляет ФУ.

Г~~
X +

Выход' КЗо

I ФУ- К2
о

УУ

Рис. 7.3. Схема широтно-импульсного модулятора, осуществляющего интег¬
ральную широтно-импульсную модуляцию
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Определим зависимость между длительностью импульса и значе¬
нием непрерывного сигнала. В соответствии с алгоритмом работы

ШИМ

'и

\mdt- §Uon dx = 0,
О О

где 0 < / < /об, 0 < т < ?и,

откуда

1о6 _
J x(t)dt -ясряоб’
О

U (7.3)он

где хср — среднее значение непрерывного сигнала за время to6.
Отсюда следует, что длительность импульса на выходе ШИМ с ин¬

тегральной широтно-импульсной модуляцией пропорциональна сред¬
нему значению модулирующей функции за время интегрирования.

При —В\ <х< В2 так же, как и для ШИМ с линейной разверткой,

на вход модулятора подается постоянное смещение UCM > \ | . Тогда

(7.4)=*и = *ср ’-*-ср +и и и
Oil он Oil

Го6 UCM.где ?и0 =

Если процесс интегрирования сигнала на входе ШИМ начинает¬
ся сразу же после окончания формирования импульса, то период
работы модулятора Т = /и + tQ§ не постоянен, причем значение /и
зависит от вида модулирующей функции. В этом случае широтно¬
импульсной модуляции сопутствует паразитная частотно-импульс¬
ная модуляция — изменение периода следования импульсов в зави¬
симости от сигнала x(f). При работе ШИМ с внешней синхрониза¬
цией, когда процесс интегрирования входного сигнала начинается
через равные промежутки времени Т, величина которых должна пре¬
вышать /и

В системах с частотными датчиками, в частности, в трактах изме¬
рения пути, пройденного поездом, и его скорости широко исполь-

+ /об, частотно-импульсная модуляция отсутствует.max
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зуется частотно-импульсная модуляция (ЧИМ), в которой, как ука¬
зывалось выше, длительность периода следования импульсов зави¬
сит от модулирующего сигнала x(t). Модуляторы ЧИМ строятся та¬
ким образом, чтобы период следования импульсов был обратно про¬
порционален величине х. При этом частота следования импульсов
линейно зависит от х. Очевидно, что при этом способе модуляции
дискретизация по времени непрерывного сигнала происходит с пе¬
ременным шагом.

В системах с импульсными видами модуляций АИМ, ШИМ,
ЧИМ сигнал на выходе модулятора также, как и непрерывный сиг¬
нал, может принимать бесконечное множество значений. Сигна¬
лы, принимающие бесконечное множество значений, называют
аналоговыми.

Развитие вычислительной техники привело к широкому исполь¬
зованию цифровых систем управления. В цифровых системах ана¬
логовый сигнал преобразуется в цифровую форму с помощью АЦП.
На вход АЦП поступает аналоговый сигнал, имеющий бесконеч¬
ное множество значений, на выходе АЦП получаем сигнал, опре¬
деляющий двоичный код фиксированной разрядности п. Следова¬
тельно, число различных состояний на выходе «-разрядного АЦП
конечно и равно 2п. Преобразование аналогового сигнала, имею¬
щего бесконечное множество значений, в сигнал с конечным мно¬
жеством значений, называют квантованием по уровню (или просто
квантованием) [5]. Операция квантования связана с округлением
непрерывной величины. Модель идеального квантования (рис. 7.4,
а) представляется в виде нелинейного элемента (НЭ), для которо¬
го зависимость выходной величины хВЬ1Х от входной хвх имеет вид,
приведенный на рис. 7.4. Погрешность квантования А = хВЬ1Х — х

Если нелинейный элемент округляет аналоговый сигнал хвх в
соответствии с характеристиками, приведенными на рис. 7.4, бив,
то максимальная погрешность квантования равна q — шагу кван¬
тования по уровню. В том случае, когда округление реализуется не¬
линейным элементом, имеющим характеристику, симметричную
относительно оси ординат (см. рис. 7.4, г), максимальное значение
погрешности определяется величиной q/2. Эту характеристику
можно принять за базовую, так как она уменьшает вдвое макси¬
мальную методическую погрешность и может быть получена из пер¬
вых двух путем додачи на вход НЭ постоянного смещения, равного
соответственно ±q/2.

ВХ’
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—2q
--3q

Рис. 7.4. Модель квантующего устройства (а); характеристики идеального
квантующего устройства (б, в, г)

Погрешность квантования по уровню для базовой характеристи¬
ки НЭ функционально связана с входной величиной в соответствии
с рис. 7.4, г следующим образом:

А = /а?-хвх при kq-0,5q<xBX<kq + 0,5q, (7.5)

где к — номер интервала квантования.

Рассмотренные характеристики НЭ имеют постоянный шаг кван¬
тования по уровню. В общем случае это необязательно.

В цифровых системах управления непрерывный сигнал подвер¬
гается временной дискретизации и квантованию по уровню. В со¬
ответствии с изложенным выше операция квантования нелиней¬
на. В тоже время, процесс временной дискретизации, как будет по¬
казано в п. 8.2, может быть описан линейным оператором. Поэтому
в данный книге термин «квантование по времени», иногда приме¬
няемый в технический литературе, не используется.

Входной сигнал объекта управления, как правило, является ана¬
логовым. Поэтому дискретизированный по времени и квантованный
по уровню сигнал на выходе цифрового устройства управления дол¬
жен быть преобразован в аналоговый. Это преобразование называ¬
ют восстановлением. Операция восстановления реализуется цифро-

аналоговым преобразователем (ЦАП).
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Таким образом, по виду сигнала системы автоматического управ¬
ления могут быть непрерывными, импульсными и цифровыми.

В состав системы управления входят, как правило, инерционные
элементы. Математические модели, описывающие процессы в этих
элементах, базируются на законах физики. Поэтому модель САУ со¬
держит в общем случае систему интегро-дифференциальных и ал¬
гебраических уравнений. Так, при моделировании электрических
цепей, динамики локомотива, используются обыкновенные диффе¬
ренциальные уравнения. При моделировании процессов в системах
с распределенными параметрами (например, распространение вол¬
ны воздуха в тормозной системе поезда; переходные процессы в
длинных линиях) используются дифференциальные уравнения в
частных производных. Моделирование процессов в цифровых уп¬
равляющих устройствах систем может быть осуществлено на базе так
называемых разностных уравнений. В данной книге будут рассмат¬
риваться модели на основе обыкновенныхдифференциальных и раз¬

ностных уравнений.

7.2. Модели разомкнутых импульсных систем
с амплитудно-импульсной модуляцией

Построение моделей этих систем начнем с рассмотрения систем
с амплитудно-импульсной модуляцией первого рода (АИМ I) [6]. По¬
ставим задачу, которая позволит в дальнейшем построить модель ли¬
нейной разомкнутой импульсной системы. Пусть требуется опреде¬
лить реакцию хвых непрерывной линейной системы, заданной пере¬
даточной функцией Щр), на последовательностьх*вх прямоугольных
импульсов длительностью /и, следующих друг за другом через рав¬
ные промежутки времени Т> /и. Амплитуда этих импульсов пропор¬
циональна значениям моделирующей функции хвх(/) в момент вре¬
мени t= пТ, п = 0, 1, 2, ... (рис. 7.5).

Формализуем эту задачу. Вначале опишем процесс амплитудно¬
импульсной модуляции — преобразование сигнала xBX(t) в х*

х*вх — последовательность импульсов (вданном примере прямоуголь¬
ной формы), амплитуда которых равна значению моделирующей
функции xBX(t) при t= пТ, п = 0, 1, 2, ..., т.е. хвх[Ш].

Рассмотрим множительное устройство (рис. 7.6), на один вход ко¬
торого подается сигнал хвх(0, на второй — последовательность 5-фун-

где
ВХ’
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кций с шагом следования Т, т.е. сиг¬

нал X §(t-nT). На выходе мно-
*вых(')Х*х

Мр)

П=О
жительного устройства получаем

результат *вх = xBX (t) 8(t-nТ),

б

*вх \ых(0
п=О

называемый решетчатой функцией

и представляющий последователь¬
ность8-функций8(0), 8( 7),8(27), ...,
веса (коэффициенты) которых оп¬
ределяются значениями функции

xBX(t) в момент /= пТ. По существу,
проведена временная дискретиза¬
ция непрерывного сигнала хвх(/) с
шагом Т. В теории управления при¬
нято элемент, преобразующий фун¬
кцию непрерывного времени tв ре¬
шетчатую функцию, называть иде¬
альным импульсным элементом ИЭ (см. рис. 7.6, б).

Сигнал на выходе ИЭ

Т 2 Т ЪТ tК

Рис. 7.5. Линейная система (а), на
входе которой последовательность
прямоугольных импульсов (б), мо¬

дулированных по амплитуде

y[nT]= xBX(t)ÿS(t-nT), (7.6)

п=0

поэтому идеальный импульсный элемент является моделью времен¬
ной дискретизации непрерывного сигнала. Выражение (7.6) опре¬
деляет оператор, преобразующий непрерывный сигнал xBX(t) в дис¬
кретизированный по времени сигнал у[пТ\. Это преобразование яв¬
ляется линейным.

бсоа

*в*х(0*вх(')
/7=0

<s>
иэт

<Л)

Рис. 7.6. Модель преобразования непрерывной функции в решетчатую (а);
идеальный импульсный элемент (б)
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Действительно, если xBX(t) = xÿ(t) + х2(/), то в соответствии с (7.6)

[*,(r)+*2(/)]Z 8(/-йГ) = х,(/)18(t-nT)+
п—0 п=О

+*2<0I Ht-nT).
п=О

Еслихвх(0 = cxx{t), то [схДО] Z 6(t-пТ) = c[x{(t) I 5(t-nT)\.
я=0 п=О

В соответствии с определением линейной системы, приведенным
в главе 1, выполнение указанных равенств доказывает линейность
оператора (7.6).

Формализуем следующий шаг — преобразование решетчатой фун¬
кции (еще раз подчеркнем, что эта функция — последовательность
5-функций с соответствующими весами) в последовательность им¬
пульсов (в данном примере — прямоугольных). Прямоугольный им¬
пульс хпр с амплитудой, равной 1, и длительностью tu = уТ может
быть представлен в соответствии с рис. 7.7 как разность двух функ¬
ций: 1(/)-1(/-/и).

Изображение по Лапласу функции 1(/) равно 1/р, изображение
функции 1(t— /и) в соответствии с теоремой о запаздывании рав¬

но —е pt" . Следовательно, изображение импульса:
Р

]__ 1

Р Р

Элемент, имеющий передаточную фун¬
кцию 5ф(/?), оригинал которой является
функцией, описывающей форму импульса
(в данном случае прямоугольную) называет¬
ся формирующим элементом (ФЭ). Подклю¬
чим вход ФЭ к выходу ИЭ (см. рис. 7.8, а).

На вход формирующего элемента по¬
ступает решетчатая функция — последо¬
вательность 5-функций с весами хвх[пТ\,
п = 0, 1,2, ... Реакция формирующего эле-

(7.7)$ф(Р) =
КО

*пр /

'и /

7
id-ÿ

Рис. 7.7. Представление
прямоугольного импульса

в виде разности функций
1(0 и 1{t- tj
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ба

*пр *прxm[nt] Хвх *вXnx(t\
Зфэ(Р)иэт иэт (р) т

Щ(Р)

Рис. 7.8. Модель формирования последовательности импульсов, модулирован¬
ных по амплитуде (а), модель разомкнутой импульсной системы (б)

мента на 8-функцию — импульсная переходная функция это¬
го звена (оригинал 5ф(р)) является импульсом соответствующей фор¬
мы (вданном случае прямоугольной). Амплитуда импульса равна весу
8-функций, т.е. при t= пТравна хвх\пТ\. Таким образом, сигнал хпр
на выходе формирующего элемента есть сигнал АИМ I. Если теперь
выход -5ф(/?) соединить со входом линейной системы, заданной пе¬
редаточной функцией W(p) (см. рис.7.4, б), то сигнал хвых на ее вы¬
ходе есть реакция линейной системы на последовательность импуль¬
сов (в данном примере прямоугольных), модулированных по амп¬
литуде функцией хвх(/). В общем случае передаточная функция 5ф(р)
формирующего элемента есть изображение функции, описывающей
заданную форму импульса. Так как в соответствии с рис. 7.8, б изоб¬
ражение

Хпр(Р) = У(Р)Яф(р)’ а хВЪ1Х(р) = хпр(р)К(р),

то *вых(р)= y{p)Sÿ(p)W{p) = y{pW3(Р), (7.8)

где W3(p) = Щр) — передаточная функция эквивалентной непрерывной

части системы.

Таким образом, выполненная формализация позволила получить
модель разомкнутой линейной импульсной системы, состоящую из
последовательного соединения идеального импульсного элемента и
эквивалентной непрерывной части системы. Определим реакцию
этой системы на входной сигнал xBX(t).

В момент времени t = 0 на входе ИЭ сигнал хвх(0), на выходе
ИЭ хвх(0)б(/). Реакция эквивалентной непрерывной части систе¬
мы (рис. 7.9) на 8-функцию с весом хвх(0) — есть импульсная пе¬
реходная характеристика, умноженная на хвх(0), т.е. хвх(0)&(0, где
k(t) = Z-1[ W{p)] — обратное преобразование Лапласа от передаточ¬
ной функции W{p).
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В момент времени t—Tна вхо¬
де ИЭ сигнал хвх(0, на его выходе

хвх(7)5(/ - Т), а реакция приве¬
денной эквивалентной непрерыв¬
ной части xBX( T)k(t- Т).

Аналогично в момент времени
t=mTна входе ИЭсигнал xBX[m 7],
а на его выходе — xBX[mT\6(t —

Рис. 7.9. Реакция разомкнутой им- — тТ). Реакция приведенной эк-
пульсной системы на входной сигнал Бивалентной непрерывной части:

xBX[mT\(t — mT). Заметим, что в
этих выражениях t < mT, k(t — mT) — 0 при t< mT. Сигнал на выходе

ХвыхСО равен сумме рассмотренных сигналов.
Прежде чем выписать общую формулу, введем обозначения. Время t

z(/)
xBX[T\k(t—T)

xjom

;
2

Т 2 Т 3Т t

t
будем определять в относительных единицах: — = п + 8, где п = 0, 1,

Т

2, ..., О < в < 1, т.е. t = (п + е)Т. Функцию хВЬ1Х(0 = хвых[(п + е)7]
будем обозначать хВЬ1Х(д, в). Если xBblx(t) непрерывна, тохвых[д, в =
= Ч =хвых1" + 1. е = 0].

Если при t= пТфункция Xgbix(0 имеет точку разрыва, то XgbIX[/2, е =
= 1] — значение функции хВЬ1Х(0 слева от точки разрыва, хВЬ1Х[я + 1,
в = 0] — справа.

Импульсная переходная функция к (t — mT) при введенных обо¬
значениях может быть записана в виде:

к (t— mT) = к[(п + в)Т— mT\ = к[(п — m + в)Т= к\п — т, в].

Тогда формула для вычисления реакции разомкнутой импульс¬

ной системы на заданный входной сигнал x(f) имеет вид:

п
*вых[я>я]= х хвх[тТ]к[п-т,в]. (7.9)

т-0

Эту сумму можно записать и в другом виде. Обозначим п — т = I.
Тогда

*вых[л>я]= xBX[(n-1)Т]к[1,г]. (7.10)
/=о
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Выражения (7.9) и (7.10) называют дискретной сверткой, применяе¬
мой для определения реакции импульсной системы на входной сигнал
при амплитудно-импульсной модуляции первого рода (АИМ 1). Эти
формулы подобны интегралу свертки для непрерывных систем.

Пример 7.1
Определить реакцию линейной системы, имеющей передаточную функцию

1
(7.11)Щр) =

ТЛР +1’

на последовательность прямоугольных однополярных импульсов длительнос¬
тью /и = уТ, где у < 1, промоделированных функцией

Хвх = (*) = kt + а.

Вначале определим передаточную функцию W3{p) эквивалентной непрерыв¬
ной части. Передаточная функция формирующего элемента определяется вы¬
ражением (7.7) при /и = уТ. Тогда с учетом (7.11)

_J

__
\-е~ят _

ТЛР + 1 Р Р(Тлр +1) Р(ТЛР +1)

(7.12)

1 1 -рут
W3(p) = (7.13)е

Получим далее импульсную переходную функцию эквивалентной непре¬
рывной части системы. Характеристическое уравнение этой системы имеет вид

р(Тлр +1) = 0.

Его корни

1
Pi =0\р2 =-—

Тл

Оригинал первого слагаемого (7.13) имеет вид:

/

*,(0=1(<)-« г”.

Так как второе слагаемое (7.13) отличается от первого только сомножите¬
лем е~Мт, то в соответствии с теоремой о запаздывании

t-yT

*2(0 = ] 4t-yT)-e 7
" при t>yT\

при t<yT.О
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Следовательно, импульсная переходная функция приведенной непрерыв¬
ной части имеет вид:

t-yТГ

тл Тяk(t) = Xl(t)-x2(t) = l(i)-l(t-yT)-e + е

Обратим внимание на то, что второе и четвертое слагаемые этого выраже¬
ния равны нулю при / < уГ, т.е.

t
1-exp при t <уТ\

Тл у
k(t) = <

t-yT t
при/‘>уЗг-exp — -exp --

T1л Т1л

Переходя к относительному времени, получаем:

Т \ тЛ
к[п,г\ = \[(п + г)Т]-\[{п + г-у)Т]-е -(л + е) + ехр -(w +8-y)

TJТп
где второе и четвертое слагаемые равны нулю при отрицательном аргументе.

Запишем это несколько в иной форме, понимая, что /= (п — 1 + 1 + е)Т:

Т
1[«,е]-ехр -(п + е)— -lfw-1,1+8-у1+

Тл
т т

к[п,е\ = < +ехр -(л-1)— -exp -(1+ 8-у)— при в < у;
I Тл у л у

(7.14)
Т Л

(«+Е-у)-т Тл-ехр -(/7 + е) при у<е<1,+ ехр
Тл

т т
отлично от 0 при п > Iгде -1[/7-1,1+е-у]+ ехр -(/2-1) •ехр -(1+8-у)

Т Тл у л у

Т "1
и 0 < 8 < у; ехр -(п +8-у) ОТЛИЧНО ОТ 0 при /7>1,у<8<1.

Тл у
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Подставив (7.14) в (7.9), получаем:

Т
1[л-т,е]-ехр -(п-т +е)—

Тл
— \\п —1 — /77,1 + — у]+

I xBX[mT] при 0 < е < у;
т=0

Т Л ( т Л-(l+e-Y)ÿ--{n-m-1)
Тп Тл+ехр ехр

-

(7.15)
-ехр -(п-т +е)— +

Тл
xBX[mT] при у<я<1.Т \

-(п-т+Е-у)т=0
+ехр

В соответствии с условием задачи

(7.16)хвх[тТ]= ктТ +а.

Пример 7.2
Определить реакцию линейной системы, имеющей передаточную функцию

(7.11), на «ступенчатый» входной сигнал, заданный в соответствии с рис. 7.10
функцией хвx(t) = х[пТ\ = а+ кпТ.

Поставленная задача сводится к предыдущей при у = 1.
Тогда, положив в (7.15) у = 1, с учетом (7.16) получаем (7.17):

Т
•Хвых[я’е]= (a + kmT)<\[n-m,E]-exр -(п-т+ е)— \-\[п-\-т,е]+

Тлт=0

(7.17)Т Т
+ ехр -(n-m-1)— -ехр -в—

Тл Тл
Обобщим эти примеры, рассматривая реакцию линейной стационарной си¬

стемы, заданной своей передаточной функцией W(p), на последовательность
прямоугольных импульсов длительностью tH — уТ, 0 < у < 1 при АИМ I и вход¬
ном сигнале хвх(0- Передаточная функция непрерывной части системы

W3ip)= \j~e-*v\w(p).
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*вх Тогда импульсная переходная функ¬
ция приведенной непрерывной части си¬
стемы есть оригинал IV3(p):

х[пТ\

х[пТ\
k(t)= L~'[W3(p)]=

_г1ГЖ(р) Щр)е-Ят
а

(7.18)
t Р Р

Рис. 7.10. Преобразование непре- Так как W{p)/p — изображение
переходной функции hA(t) заданной
непрерывной части системы (не эк¬
вивалентной), то

рывногосигнала xex(t) в ступенчатый
х[п7]

МО при0</< уТ;

hA(t)-hA{t-yT) при t>yT.
k(t) = hA(t)-hA(t-yT) =

Переходя к относительному времени и учитывая, что импульс¬
ная переходная функция k(t) определяется различными выражения¬
ми при t<yTи при t>yT, запишем:

hA[n,z\-hA[n-1,1+ при е < у;

hA[n,z\-hA[n,z-y]

При записи учтено, что t — уТ= (v + г)Т — уТ = (у + г — у)Т и,
следовательно, при г < у удобно записать t — [п — 1 + (1 + е — у)]Т.
Подставив (7.19) в (7.9), получаем выражение сигнала на выходе ра¬
зомкнутой импульсной системы при АИМ I рода и прямоугольных
импульсах:

к[п,г\ = (7.19)
при е>у.

=

1=0 [

hA[n-m,e\ -

—Ад[п-m-1,1+ е-у]

hA[n-m,z\-

-hA[n-m,z-y]

при 0<8<у;

(7.20)

I *вх[™Л
7=0 [

при Y < <1.

Здесь индекс I использован для указания того, что рассматрива¬
ется система с амплитудно-импульсной модуляцией первого рода.
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Система с амплитудно-им- а

пульсной модуляцией IIрода. AM- xBX(t)
К

*пр(0
Щр)плитудно-импульсным модулято¬

ром, реализующим АИМ II, явля¬
ется ключ К (рис. 7.11), на вход
которого подан входной сигнал
хвх(т), выход К подключен ко вхо¬
ду линейной системы W{p). Ключ
замыкается периодически на вре-

б

*пр(ОХвх

Т 2 Т 3Т

мя уТ, 0 < у< 1, Т— период. Следо- рис> 7.11. Модель разомкнутой импуль-
вательно, навходлинейнойсистемы сной системы сАИМ II рода (а), сигнал

в промежутке времени пТ< t < (п + на входе линейной части системы (б)

+ 1)Тпоступает входной сигнал

t

хBX{t) при пТ <t <(п + у)Т;

при (п + у) <t<(n +1) Т.

Используя интеграл свертки, получим реакцию линейной части си¬
стемы на импульсный сигнал, поступающий на ее вход в момент /= тТ:

*пр«=
0

t
j xBX(x)k(t-mT -i)dT при mT <t<(m + у)Т;

тТ

(m+y)T

J xBX(x)k(t-mT при t>(m + y)T,
(7.21)

l mT

где k(t) = L~ÿ\ W(p)] — импульсная переходная характеристика линейной части
системы; верхний индекс (т) в обозначении сигнала подчеркивает, что выраже-
ние (7.21) определяет реакцию линейной системы только на т-й импульс; t>mT.

Тогда реакция системы на последовательность прямоугольных
импульсов, вершины которых повторяют входной сигнал, т.е. при

АИМ II, определится как сумма сигналов хяп(/) :

*вых11[(« + = Хвыхц[">е1= 4ыхц[, =("+ Е)7’] =
/77=0

П I

X \ хвх(т)к[(п-т)Т + еТ-z]dx при mT<t<(m + y)T; (722)
m=0mT

п (m+y)T

J xBX (т)к[(п-т)Т + Т-т]ят при t > (m + у)Т.Z
/77=0 mT
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7.3. Модели разомкнутых линейных импульсных систем
с амплитудно-импульсной модуляцией при задании

непрерывной части системы матричными уравнениями

В современной теории управления моделями линейных стацио¬
нарных систем, какбыло показано в п. 3.6, являются матричные диф¬
ференциальные уравнения:

(7.23)X=AX+BU;

(7.24)Y=CX+DU.

Тогда при АИМ I функциональная схема импульсной системы
аналогично схеме, описанной в предыдущем параграфе, имеет вид,
приведенный на рис. 7.12.

*вх У*вх и Х = AX+BU
Y = CX+DUиэт *уф(р)

*пр

Рис. 7.12. Модель разомкнутой импульсной системы

Выпишем выражение, определяющее зависимости фазовых ко¬
ординат x(t) от времени при заданном входном сигнале и и векторе
значений фазовых координат х(/0):

t

X(t) = eMt~to) X(f0)+ .

'о

(7.25)

В соответствии с понятием формирующего элемента, введенного
в предыдущем параграфе, оригинал <5ф(/?) — есть функция, описы¬
вающая форму импульсаД/), где 0 < т < Т. Тогда

(7.26)и[пТ + т] = хвх[лГ]/(т).

Будем считать, что состояние системы в момент времени = пТ
известно, тогда после подстановки (7.26) в (7.25) и перехода к отно¬
сительному времени имеем:
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гТ

Х[пТ]+ je
О

гТ

Х[пТ]+ je
О

АТе -АТХ[(п + е)Т] = е Bx,x[nT]f(T)dx =

(7.27)
= еАТе -АтДт)с1тВхвх[пТ] .

Введем обозначение:

еГ

J «_At/(T)fl,T = 'Ч|>(А,е),
О

(7.26)

где WjjÿA, в) — матрица, которую назовем матрицей преобразования*.

Тогда

Х[(я + е)Г]= гЛГя{Х[иТ]+ Шф(А. [и Г]}. (7.29)

Положив в (7.27) 8=1, получим:

Х[(« +1)Г] = еАТ{Х[я Т]+ Wф(А,1)Вхвх[пТ]}. (7.30)

Выражения (7.27) и (7.30) позволяют определить реакцию ли¬
нейной импульсной системы с АИМ I на заданный входной сиг¬
нал при известных начальных значениях фазовых координат Х(0).
Уравнение (7.30) является рекуррентным соотношением, позволя¬
ющим при известных Х[0]и хвх[0] определить Х[7]; далее при вы¬
численных Х[7] и заданном хвх[Т\ рассчитать Х[27] и т.д. При из¬
вестных Х[пТ\, v = 0, 1, 2, ... в соответствии с уравнением (7.27)
рассчитывают значения Х[п, в] при любом 8. Выход системы Y в со¬
ответствии с (7.24) рассчитывается как линейная комбинация фа¬
зовых координат.

Таким образом, модель разомкнутой импульсной системы с
АИМ I в виде уравнений (7.27) и (7.30) позволяет определить ее
реакцию на заданный входной сигнал.

В качестве частного случая рассмотрим традиционную АИМ I, ког¬
да моделируемыми по амплитуде являются прямоугольные импульсы
длительностью /и = уТ, 0 < у < 1. Для прямоугольных импульсов

/(т) =1(т)-1(т-Y Т). (7.31)

Матрица преобразования введена А.И. Сеславиным.
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Подставив (7.31) в (7.26), получаем;

ЕГ

Iе
о

1 -АеТ-Атdx = \—A~e при 0 < е < у;

= <

(7.32)Yт

\e-Mdx = l-A-le-ÿT При у<я<1

I о

где I — единичная матрица.

Следовательно,

Х[(л +е)7>

еАТг{Х[п Т]+ (I-А~1е~АеТ )В*вх[пТ]} при 0 < е < у;

еАГг{Х[пТ}+ (I-A~le~AyT ) Вхвх[п Т]} при у < е < 1 .
(7.33)

Откуда

Х[(п + \)Т]= еАТ{Х[пТ]+ (\-А-1е-Аят)Вхвх[пТ]}.

Уравнения (7.33) и (7.34) являются моделью разомкнутой им¬
пульсной системы с АИМ I и прямоугольными импульсами. Ис¬
пользуя реккурентную процедуру, описанную ранее, формулы
(7.33), (7.34) и (7.24) позволяют рассчитывать реакцию этой линей¬
ной импульсной системы на заданный входной сигнал.

Функциональная схема модели разомкнутой импульсной сис¬
темы с АИМ II, линейная часть которой задана уравнениями (7.23)

и (7.24) по аналогии с моделью, описанной выше, имеет вид, при¬
веденный на рис. 7.13.

В отличие от системы с АИМ I, в данном случае

(7.34)

UBX[nT + т] при л = 0,1,2, ... 0<т<уГ;

[О приуГ<т<Г,

где уТ= tw у — относительная длительность импульса.

(7.35)

Jy х„„(о| X = AX+BU--—— Y = CX+DX

У Рис. 7.13. Модель разомкнутой им¬
пульсной системы с АИМ II рода>
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Будем считать, что состояние системы в момент времени = пТ
известно, тогда после подстановки (7.35) в (7.25) и переходя к отно¬
сительному времени, имеем:

Х[(л +е)Г]=

еАТс|Х[« Т]+ Е[ е~[л74т]dx при 0<е<у;
о

(7.36)Y т
еАТе\Х[пТ]+ ] е~АтВхвх[пТ]с1т при у<8<1.

О

При 8 = 1

YТ
А Т Х[пТ]+ je АтВхвх[пТ + T]dx к (7.37)Х[(п +1)Т]-е

о

Уравнения (7.36) и (7.37) являются рекуррентными соотношени¬
ями, позволяющими при заданных начальных условиях и входном
сигнале хвх(/) определять изменение фазовых координат разомкну¬
той линейной импульсной системы с АИМ II во времени. Вектор Y
(выход системы) вычисляется как линейная комбинация фазовых
координат в соответствии с выражением (7.24).

7.4. Модель разомкнутой импульсной системы
с широтно-импульсной модуляцией

Функциональная схема модели разомкнутой импульсной систе¬
мы с широтно-импульсной модуляцией представлена на рис. 7.14.
ШИМ — широтно-импульсный модулятор преобразует входной
сигнал хвх(/) в последовательность прямоугольных импульсов, дли¬
тельность которых зависит от этого входного сигнала (модулирую¬
щей функции). Линейная часть системы задана системой уравне¬
ний (7.23), (7.24).

ШИМ реализует различные
методы модуляции. Последова-

U Х = AX+BU
Y = CX+DX

*вх(0 Y
ШИМ

тельность однополярных прямо¬
угольных импульсов (рис. 7.15, а),
период следования которых по-

Рис. 7.14. Модель разомкнутой
импульсной системы с ШИМ
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а

xBX(t), u(t)

Кх tu2fuO tu3

2 T 3T t6

u(t)

t2 T 3T

Рис. 7.15. График модулирующей функции х х(/), сигнал однополярной одно¬
сторонней (а) и двуполярной односторонней модуляции (б)

стоянен и равен Т, длительность переменна и зависит от значений
моделирующей функции, начало совпадает с моментами времени
t= пТ, п = 0, 1,2,..., называют сигналом с однополярной односторон¬
ней широтно-импульсной модуляцией. На выходе ШИМ можно полу¬
чить двухполярный сигнал (см. рис. 7.15, б). В этом случае реализуется
двухполярная односторонняя модуляция. Длительность «-го импуль¬
са на выходе идеального широтно-импульсного модулятора пропор¬
циональна значению входного сигнала в момент времени t— пТ:

{ип=кхвх[пТ] (7.38)

где /ип — длительность «-го импульса;
к — коэффициент пропорциональности.

Относительная длительность «-го импульса определяется выра¬
жением

YM = =f*B Л

На выходе модулятора, реализующего интегральную широтно¬
импульсную модуляцию, описанную в п. 7.1, длительность «-го
импульса в соответствии с (7.4) определяется средним значением

(7.39)
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модулирующей функции лсвх(/) за образцовый промежуток време¬
ни ?об < 71, предшествующий переднему фронту этого импульса:

пТ

|x(t)dt. (7.40)
*об яТ

Откуда относительная длительность п-го импульса

пТ

у[п\ =(-ш— к J x(t)dt. (7.41)
Т П06 пТ-tоб

При /об —> 0 модель модулятора с интегральной широтно-импуль¬
сной модуляцией преобразуется в модель идеального ШИМ. Дей¬
ствительно, при /об —» 0 среднее значение xBX(t) за /об стремится в
случае непрерывного xBX(t) к своему мгновенному значению хвх\пТ\.

Модель (7.39) идеального модулятора широко используется. Это
объясняется тем, что шаг временной дискретизации Твыбирается с
учетом возможности достаточно точного описания дискретным сиг¬
налом непрерывного. Откуда следует, что за время Т сигнал хвх(/)
изменяется незначительно и следовательно, принимаемые в модели
идеального модулятора допущения олинейной зависимости длитель¬
ности импульса от значения моделирующей функции в начале им¬
пульса оправдано.

На выходе модулятора с линейной разверткой, принцип действия
которого изложен в п. 7.1, длительность п-то импульса пропорцио¬
нальна значению модулирующей функции xBX(t) в момент оконча¬
ния этого импульса. В соответствии с (7.1)

Т
(7.42)W *BX[яТ + ]•

Откуда относительная длительность п-го импульса вычисляется
из уравнения

1
Ч[п] = -хвх{пТ + у[п]Т}. (7.43)

В ряде случаев решение уравнения относительно у [п\ сопряжено

со значительными трудностями. Вместе с тем можно достаточно ра-

235



1 зумно с практической точки зрения
выбрать модель входного сигнала и
соответствующий шаг временной
дискретизации Т так, чтобы полу¬
чить зависимость у [п\.

Рассмотрим еще раз (см. п. 7.1)
метод линейной развертки при реа¬
лизации ШИМ. Формирование я-го
импульса осуществляется в соответ¬
ствии с временной диаграммой, при¬

веденной на рис. 7.16. Очевидно, что рассматриваемый метод мо-
(t) < А и максимальное значение ско-

<—. Кроме того,

*вх(0

А

(я+1)Г| 7пТ Кп

Рис. 7.16. Формирование прямо¬
угольного импульса в широтно-им¬
пульсном модуляторе с линейной

разверткой

дуляции реализуем, когда х
та\

dx
рости изменения входного сигнала

dt Тшах

изменение функции хвх(/) на шаге временной дискретизации / дол¬
жно быть невелико для того, чтобы импульсный сигнал имел дос¬
таточно информации о модулирующей функции. В соответствии с
этим функцию хвх(0 разложим в ряд Тейлора при t= пТ,п = 0, 1,2,...
и ограничимся первыми двумя членами ряда, т.е.

гТ dxBX(t)
хвх[пТ + гТ]= хвх[пТ]+

1! dt t=nT

При такой кусочно-линейной модели входного сигнала уравне¬
ние имеет вид:

У[п]Т dxBX (t)1
y[n]= -lxBX[nT]+

/I 1! dt t=nT

хвЛ"Т]
Y[п\ = (7.44)откуда

(О
А-Т

dt
t=nT

Рассмотрим определение функции у[я] на примере.
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Пример 7.3
Определить функцию у[п] при вход¬

ном сигнале

*вх(0{

2005

20г2 + 5 при 0 < / < 10 с;

2005 при? >10 с.
ХВХя (7.45) 5

-я
t

График функции хвх(?) приведен на
рис. 7.17. Этот входной сигнал подан на
вход широтно-импульсного модулятора с
линейной разверткой. Параметры моду¬
лятора заданы А = 3000, Т— 10_3 с.

Требуется определить у [п].
Вначале ответим на вопрос: возможно ли использование заданного моду¬

лятора для преобразования сигнала (7.45)?
Сравним максимальное значение входного сигнала с величиной А:

•Хвх(0тах = < 3000. По этому параметру ответ положительный. Далее
определим максимальное значение скорости изменения входного сигнала:

dxBX(t) J40? при0<?<10с;

0 при?>10, с,

Рис. 7.17. График сигнала на входе
шим

dt

х(') 3000 А 1
= 400<откуда

Тс10“3dt max

Следовательно, заданный модулятор может быть использован для преобра¬

зования входного сигнала (7.45).
Следующий вопрос, на который необходимо ответить, возможно ли исполь¬

зовать модель (7.44) для описания заданного преобразования. Очевидно, что
правомочность модели следует проверять на участке изменения функции xBX(t).
Разложим заданную функцию хвх(?) при t= пТ < 10 в ряд Тейлора:

гр , 40 2Т + —(е Т) .
40д Т

хвх[пТ + еТ]-20п2Т2 +5+
1! 2!

40Г2
Наибольшая величина третьего члена ряда при = 1 составляет

= 210-5 что на 5 порядков меньше суммы первых двух членов ряда даже при

/7 — 0. Следовательно, использование модели (7.44) правомочно, и

2

20 - 10-6 Л7220/72Г2 +5 10 =104;при п<
А-ТАОТ 3000-40 - 10_6

2005 _ 2005

А
_

3000

10_3
у[п]= <

10
з>10при п =

КГ
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Двусторонняя двухполярная ШИМ реализуется модулятором в
соответствии с временной диаграммой, представленной на рис. 7.18,
где хвх(/) — модулирующая функция. Треугольный сигнал форми¬
руется генератором модулятора. Переключение полярности сигна¬
ла на выходе модулятора осуществляется в те моменты времени,
когда хвх(0 пересекается с треугольным сигналом. Высота и осно¬
вание треугольника равны А и Т, соответственно. Очевидно, что для
правильного функционирования модулятора необходимо выполне¬
ние следующих условий: хвх(/) < А, модуль максимальной скоро-max

с/х АI s < < — .сти изменения входного сигнала
dt Тmax

1
А

\ сп+2)Т t(п-\)Т пТ (п+\)Т

4V

!-*я

(-)
С

t-1
<->

Рис. 7.18. Временная диаграмма преобразования непрерывного сигнала xJJ) в
сигнал двухсторонней двуполярной ШИМ

В соответствии с временной диаграммой длительность поло¬
жительного импульса, передний фронт которого сформирован в

момент времени t = (n-\)T + е а задний — в момент времени

t = nT +еяТ, равна

т Хвх[<«- \)Т+ е®,Т]+ Хвх + г[1)Т]
А 2

Длительность отрицательного импульса, следующего за рассмот¬
ренным, равна
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(-) _ Т xBX[nT +$h\ + xBX[nT + г{я)Т\
W А 2

Откуда следует, что длительность импульсов при двухсторонней
двухполярной широтно-импульсной модуляции пропорциональна
половине суммы значений модулирующей функции в начале и кон¬

це импульса. Для определения связи величин гяТ и с хвх(/)
(см. рис. 7.18) воспользуемся разложением этой функции в ряд Тейло-

Т
ра в точках t= пТи t = nT + — с удержанием первых двух членов ряда:

гТ dxBX (t) 1
х[пТ]+ при 0<8<—;

1! dt t-nT
xBX[nT +eT]= <

гТ dxBX{t)Т 1
х пТ + — + при — <е<1.

2 1! dt 1 2t=nT+-T
2

Тогда значение гяТ определяется из уравнения

$)Т dxBx(0$1)Т = х[пТ\+
1! dt t=nT

откуда

О) = (7.46)
dxвх (я)

А-Т
dt t=nT

Значение еяТ определяется из уравнения

2А-2Агя=х пТ +—Т +Епп 1! dt2 1
t-nT-v-T

2
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Откуда

Т
2А-хвх пТ + ~

(2)_ (7.47)Ч
dxBX (О

2А + Т
1dt t=n Т+—Т
2

Перейдем далее к формализации записи сигнала u(t) на входе ли¬
нейной части системы. При односторонней однополярной широт¬
но-импульсной модуляции

1 При0<8<у[л];

О При у[я]<8<1.
и[(п + г)Т] = (7.48)

При односторонней двухполярной модуляции

1 приО<е<у[я];

-1 при у[л]<8<1.
и[(п + г)Т]= (7.49)

При двухсторонней двухполярной широтно-импульсной модуля¬
ции в соответствии с временной диаграммой (см. рис. 7.18)

1 при 0<е<е(р;

и[(п + г)Т]= < -1 приея<е<е{р;

1 при ejp < е <1.

(7.50)

В этих выражениях у[п] определяется в зависимости от использу¬
емого вида широтно-импульсной модуляции формулами (7.39) для
идеального ШИМ, (7.41) для ИШИМ, (7.44) для ШИМ с линейной

разверткой. Величины и еяТ определяются по формулам

(7.46), (7.47) при двухсторонней двухполярной модуляции.
Определим вначале реакцию разомкнутой системы с односторон¬

ней однополярной широтно-импульсной модуляцией на входной
сигнал хвх(0- Будем считать, что состояние системы в момент вре¬
мени f0 = пТизвестно. Тогда после подстановки (7.49) в (7.25) и пе¬
рехода к относительному времени имеем:
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еТ

сАГе|х[лГ]+ je~ATchВ

дт Г Yÿ д |еАГя Х[йГ]+ J e_AVcBÿ при у[я]<е<1.

при 0<е<у[я];

Х[(я+е)7> (7.51)

О

После интегрирования получаем:

еАТе|Х[«Г]+ А-1

еА { Х[лГ]+ А-1(I-е“А Гу[л] ) В} при у[п] < е <1.

)в} приО<е<у[и];-АТе\-е
(7.52)Х[(« +е)7>

Тогда рекуррентное соотношение для вычисления х[пТ\ приоб¬

ретает вид:

{х[«Т]+ A-1(i-е~АТу[п] )в}.АТ (7.53)Х[(п +1)Т] = е

Отсюда изменение фазовых координат при заданном входном
сигнале в дискретные моменты времени t= пТ определяется по ре¬
куррентному соотношению (7.53). После чего значения фазовых ко¬
ординат при изменении 8 от 0 до 1 вычисляется по формуле (7.52).
Выход системы Y в соответствии с (7.24) рассчитывается как линей¬
ная комбинация фазовых координат и управления.

Если произведение определителя матрицы А и шага временной
дискретизации Ттаковы, что |А| Т«\, то модель можно линеари¬

зовать. При этих условиях разложим функцию \-е

лора и ограничимся линейным членом разложения:

1_е-А7-у[п]=ду[п|Г

Погрешность от отбрасывания остальных членов ряда может быть
оценена сверху. Она не превышает

-АТу[п\ в ряд Тей-

С\АТ\ 1А712

,

2!
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При этом (7.53) имеет вид:

Х[(и + ОЛ = еАТ{Х[лГ]+ А“'Ау[и]В} {Х[«Г]+ у[я]В}. (7.54)

Таким образом, при I AT| «1получаем линейное рекуррентное
соотношение.

Определим далее реакцию разомкнутой импульсной системы с
односторонней двухполярной широтно-импульсной модуляцией на
входной сигнал xBX(t). Будем считать, что состояние системы в мо¬
мент времени = пТизвестно. Тогда после подстановки (7.49) в (7.25)
и перехода к относительному времени имеем:

еТ

Х[пТ]+ Je
О

YЫ
Х[пТ]+ J

о

После интегрирования получаем:

|х[л7’]+ А~'[1-е

Х[(л + е)7Ч = \ еАТе{Х[я Т]А-1[I -е_А7'у|"11В-

рА-1[е_А7’у["1-е_А7’Е]в}

Полагая в (7.55) 8=1, получаем рекуррентное соотношение для
вычисления Х[пТ\:

еАТг -АтdxВ при 0<е<у[л];

Х[(/1+ е)Г] =
е

!ееАТе -Ат -Атс/тВ- dтВ при у[/7] < е <1.
у[п]

'в!еАТг -АТе приО<е<у[я];

(7.55)

при у[я]<е<1.

|х[п7’]+ А-1[I -е~А7у[я1

l[£-AryI«]_£-A7-jB
Если |AT| «1, то соотношение (7.56) можно линеаризовать так

же, как это было выполнено при однополярной модуляции. В ре¬
зультате

]в)АТХ[{п + \)Т]= е

(7.56)
-А"

Х[(п +1)7]-еАТ{Х[п Т]+[2у[п]-1]В}. (7.57)
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Выражения (7.56) или (7.57), (7.55) и (7.24) составляют систему
соотношений, позволяющих в соответствии с рекуррентной проце¬
дурой, описанной при однополярной модуляции, рассчитывать ре¬
акцию импульсной системы на заданный входной сигнал.

Реакцию линейной импульсной системы с двухполярной двухсто¬
ронней широтно-импульсной модуляцией на входной сигнал *вх(0
получим аналогично. Будем считать, что состояние системы в мо¬
мент времени = «яизвестно. Тогда после подстановки (7.50) в (7.25)
и перехода к относительному времени имеем:

вт
Х[пТ]+

о

4пт
Х[иГ]+|

о

еАТе при0<8<8я;-АтdтВ

еАТе -АтdтВ-

8Т

\ * при eJP <е<ея;-АТ

Х[(л +е)7> (7.58)41}т

< Х[пТ]+ J е

о
еАТе -АтdтВ-

42)г гТ

drB+| еATJTB при е® < е <1.
е'„2»Г

-Ат

8(1)Г
СЯ Л

Откуда

Х[пТ]+

е«>Г 42>Г тАТеХ[(п + \)Т]= е (7.59)Ч je
о

!е h-Ат -Ат -АтdxB- dтВ + dтВ

8[2)Т8
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После интегрирования получаем:

еАГе{х[я71] + А-11 )в} приО<е<ея;-КТг\-е

еА7'е|х[«7’]+ А"1я1 e-A7-ei'» В +

при <е<Ея2);-1+А
(7.60)Х[(я + = <

*?А Те|х[пТ]+ А-1(V-е_АГе") jВ +

е~АТЕ(")В +

в-АГе?) _е-АТе

-1+А

при 42)<е<1.-1+ А В

Откуда

-АТе!,1*
Х[(« + 1)Г] = сАГ Х[яГ]+ А-1 \-е В +

(7.61)
-АЗГе?>-1

В + А4{е~АТя2) -е~АТе1В1.е-А742)+А -с

Здесь и ejp определяются входным сигналом хвх(/) в соот¬

ветствии с (7.46) и (7.47). Выражения (7.60), (7.61) и (7.24) составля¬
ют систему соотношений, позволяющих в соответствии с рекуррент¬
ной процедурой, описанной при однополярной модуляции, рассчи¬
тать реакцию импульсной системы на заданный входной сигнал.

7.5. Разностные уравнения как модель цифровых систем

Цифровые системы оперируют с сигналами, которые являются
функциями дискретного аргумента t= пТ. Диапазон изменения сиг¬
нала цифрового устройства определяется его разрядностью. Действи¬

тельно, если число двоичных разрядов N= 16, то изменение сигнала
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составляет от 0 до 216 — 1 = 65535. «Цена» младшего разряда цифро¬
вого устройства относительно максимального значения сигнала при
N= 16 не превышает (1:65535)*100 < 0,0015 %. Временная дискрети¬
зация непрерывного сигнала, как доказано выше, является линейной
операцией. Квантование по уровню в соответствии с (см. рис. 7.4) не¬
линейно. Однако учитывая, что максимальная погрешность кванто¬
вания по уровню невелика (см. п. 7.1), ею можно пренебречь. По¬
этому в дальнейшем будем считать, что преобразование непрерыв¬
ного сигнала в цифровой выполняется линейным оператором.

Модель цифрового устройства опишем оператором L, преобра¬
зующим входной сигнал и[пТ\ в выходной — х[пТ\, т.е.

х[пТ]= L{u[nT]},n = 0,l,2,-
При этом условимся, что и[пТ\ = 0 при п< 0. Рассмотрим ряд опе¬

раторов, аналогичных операторам, используемых при описании не¬
прерывных систем.

Аналогом производных для дискретных функций являются раз¬
ности. Из последовательности функций м[0], и\Т\, и[2Т\, ... получим
прямые разности 1-го порядка (или первые разности):

(7.62)

(7.63)Аы[п Т] = и[{п +1)7]-и[п Т].

В дальнейшем для простоты записи сомножитель Т будем опус¬
кать:

Ам[0]= м[1]-м[0];

Аи[\]= и[2\-и[\];

Из последовательности прямых первых разностей образуется
последовательность прямых вторых разностей (или разностей вто¬
рого порядка):

А2и[п\ = Аи[п-1]-Аи[п\ , (7.64)

т.е.

Л2м[0] = Лм[1]-Лм[0];

Л2и[1]-А«[2]-А«[1];
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Соответственно, прямая разность порядка г равна:

Aru[n\ = Ar_1и[п +1]-Ar_1и[п\ .

Подставляя в правую часть (7.65) выражение разности (г- 1) по¬
рядка и т.д. до разности 1-го порядка, в соответствии с (7.63) получим:

(7.65)

ЛЛ«[я]=я(-1)Ч*Ф+'-*]. (7.66)
к=О

г\
где С* = — число сочетаний из г по к.

(,г-к)\к\

Первая обратная разность определяется как

(7.67)Vu[n\ = и[п\-и[п-1].

Из последовательностей первых обратных разностей образуется

последовательность вторых разностей:

V2u[n\ = Vu[n\-Wu[n-1].

Соответственно обратная разность порядка г

(7.68)

Vrи[п] = S7r~lu[n]-Wr~lu[n-1].

Подставляя в правую часть этого выражения формулы обратных
разностей более низких порядков вплоть до первого, получаем:

(7.69)

Wru[n\=jÿ(-\)kCkru[n-k\ (7.70)
к=О

Если разности являются аналогами производных, тосоответствен¬
но суммы являются аналогами интегралов. По определению

т=п-1

х[п\= YJ (7.71)
т=О

Учитывая, что и[т\ = 0 при т < 0, х[0] = 0.
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Суммирование — операция, обратная получению разностей. Дей¬
ствительно,

т=п-1т-п

Ах[п\ = х[п +1]-х[п] = и[т\- и[т\ = и[п\ .
т=О т=0

Пример 7.4
1. Определить первую прямую разность для функции и[п\ = п2:

Дф/]= ф*+1]-фЙ = (я +1)2 -п2 =2п +1.

2. Определить прямые разности для функции и[п\ = е~ап:

Аи[п\ = е-а(п+1) -е~ап =(е~а -1)е~ап;

А2и[п\ = (е~а -1)<Га(я+1) -(<?« -\)е~ап =(е~а -1)2е~ап;

Аги[п]= (е-а-1)ге~ап.

3. Определить сумму функции и[п\ = п:

т=п-\

х[п]= т = 0+1+ 2 + ...+ п-1=
т=0

(сумма получена по формуле суммы арифметической прогрессии).

4. Определить первую прямую разность функции х\п\ =~~ '

Ах[п\ = х[п + \]-х[п\ =

п(п-\)

2

-п.
2

Этот результат иллюстрирует то, что операция получения первой прямой
разности обратна операции суммирования (см. п. 3).

5. Определить сумму функции и[п\ = (1 — е~а) е~ап:

т-п-1
Х[п\= X (1-е"а)с-am

т=О

По формуле для суммы геометрической прогрессии

т=п-\

4«]=(1-е"а) е
ап

= \-е~ап.
т=0
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6. Определим первую прямую разность функции х[я] = 1 — е ап:

Дх[«] = 1 -е-а(л+1) -И-е4” =(1-еГ“

Этот результат еще раз иллюстрирует, что операция получения первой пря¬
мой разности обратна операции суммирования (см. п. 5).

Процессы в цифровых системах могут быть описаны разностны¬
ми уравнениями. При использовании прямых разностей линейным
неоднородным разностным уравнением (уравнением в конечных разно¬
стях) с постоянными коэффициентами называют уравнение вида:

а'0Агх[п]+ а[Аг 1х[п] + ... + аг_\ Дх[я]+ агх[п]= и[п].

При и[п] = 0 уравнение (7.72) называется однородным. Исполь¬
зуя выражение (7.66), разностному уравнению (7.72) можно придать
другую форму:

(7.72)

а$х[п -г г]+ а\х[п + г-1]+ ...+ ar_\x[n +1]+ агх[п\ = и[п\ , (7.73)

где a-t — постоянные коэффициенты, равные в соответствии с (7.66) линейной

комбинации aj , / = 0, 1,2, ..., г.

й/ = У(-1ГЧс;:1 (7.74)
*=0

При использовании обратных разностей неоднородным линей¬
ным разностным уравнением с постоянными коэффициентами на¬
зывается уравнение вида

a'0S7rх[п\ + a{Vr 1JC[/I —1]+...+ a'r_]V x[n\ + a'rx[n\ = u[n\.

(7.75)

Используя выражение (7.70), разностному уравнению можно при¬
дать другую форму:

а0х[п]+ aix[n-1] + ...+ ar_\х[п-г + 1] + агх[п-г]= и[п\ , (7.76)

где

i

(7.77)

k=0
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При заданной функции и[п\ уравнение (7.73) представляет рекур¬
рентное соотношение, которое позволяет вычислить x[i +1], если
известны x[i], x[i + 1], x[i — г]. Рассмотрим это на примере. Пусть
разностное уравнение имеет вид:

(7.78)а0х[п + 3]+ а\х[п + 2]+ а2х[п + 1] + а3х[п\ = и[п\ ,

где и[п\ = кТп + с.

Начальные условия, т.е. значение х[/] при i = 0, 1, 2, ..., г—1, зада¬
ны: х[0] = />0; х[1] = Ьх\ 42] = Ь2. Требуется определить значения х[п\,
удовлетворяющие уравнению (7.78). При п = 0 уравнение (7.78) име¬
ет вид:

я043]+ aify + а21\ + азяо = с•

Откуда

1
43]=—[с-щЬ2~ а2ь] -а3Ь0\. (7.79)

%

При п = 1 уравнение (7.78) имеет вид:

я044]+ ахх[Ъ] + а2х[2\ + а3х[1] = кТ + с.

В этом уравнении 41] = и 42] = Ь2, х[3] определено на преды¬
дущем шаге (см. выражение 7.79). Следовательно,

44]= —{
а0 I ахх[3]-а2х[2\-аъх[Хя.кТ -Не¬

подобным образом вычисляют значения х[5] при п = 2, 46] при
п = 3 и т.д.

Таким образом, при известных начальных условиях приведен¬

ная рекуррентная процедура дает решение линейного разностного
уравнения (7.73). Аналогично реализуется рекуррентная процеду¬
ра для определения х[п\, когда разностное уравнение задано в виде
(7.76), при известных значениях х[п — 1], х[п — 2], ..., х[п — г]. Вме¬
сте с тем решение разностных уравнений может быть осуществле¬
но различными способами, в том числе использующими так назы¬
ваемое дискретное преобразование Лапласа (D-ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ)
или Z-ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.
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7.6. Дискретные преобразования Лапласа

Прямое D-ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ и Z-ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ. Распространим пре¬
образование Лапласа на решетчатые функции, определяемые выра¬
жением (7.6). Изображение по Лапласу у[п 7] имеет вид:

L{y[nT]}=I xBX(0£5(/-яГ) = |*вх(/)я8(1-и7>-','А =
[ /z=0 J о /2=0

= ЁЬвх«8(/-п7’)е-яЛ.
/2=0 0

Откуда в соответствии со свойством 5-функции

|явх(0б(/-«7т)е ptdt = x[nT]e

0

-рпТ

Следовательно, изображение по Лапласу решетчатой функции
у[пТ\ имеет вид:

оо

L{y{nT]}=YJxAnT]e~<’"T. (7.80)
/2=0

На основании этого выражения можно говорить о дискретном
преобразовании Лапласа — иначе оригинала — пе¬
рехода функции дискретного аргумента хвх[пТ\ в изображение —
функцию комплексной переменной [14J. Отбросив нижний индекс
в обозначении функции хвх[пТ\ и положив q=pT, запишем формулу

0{х[пТ]}=ях[п\е-“п. (7.81)

/2=0

Если обозначить eq = z, то правую часть выражения (7.81) можно
записать в виде

2>[n]z-". (7.82)

/2=0
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Такое преобразование оригинала х[п] в изображение x[n]z

принято называть Z-ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.
Рассмотрим далее непрерывный сигнал х(0 = х[(п + в) 7] = х[п, е].

-г

п=О

t
Такая форма записи в относительном времени — = п + е, v = 0, 1,2,...,

О < в < 1 уже использовалась ранее при рассмотрении разомкнутых
импульсных систем. Тогда непрерывный сигнал можно трактовать
как совокупность бесконечного числа функций дискретного аргу¬
мента п, каждая из которых имеет номер в из бесконечного числа
номеров между нулем и единицей. Для каждой функции дискретно¬
го аргумента, номер которой в, можно воспользоваться формулой
D-преобразования, т.е.

D{x\(n +е)Л > = ОДл,е]}= 2 (7.83)

п=О

В дальнейшем 7)-изображение сигнала х[п] будем обозначатьх*(#),
а изображение сигнала х[п, в] соответственно x*(q, в). Преобразова¬
ние оригинала в изображение будем называть прямым D-ÿÿÿÿÿÿÿ-
зованием. Если используется формула (7.82), то такое преобразова¬

ние х[п\ в x*(z) называют прямым Z-ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.
Переход от изображений к оригиналам называют обратным D-

преобразованием (или обратным Z-ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ).
Для того чтобы изображение функции дискретного аргумента

было определено, нужно потребовать, чтобы ряды (7.81), (7.76), (7.83)
были сходящимися. Можно доказать, что если эти ряды сходятся при
Re <7 = а0, где Re# — действительная часть комплексного числа q, то
они также сходятся и притом абсолютно и равномерно при всех q,
удовлетворяющих условию Re# > а0. Значения стс, для которого при
а > ас рассматриваемые ряды сходятся, а при а < ос — расходятся,
называются абсциссой сходимости.

Пример 7.5
Найти Z)-преобразование и Z-ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ сигнала х[л]=1[л].
Подставив х[«] в (7.83), получим:

/(?)= Д{4л]}= Х|№"'"'. (7.84)

п=О
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Если Re <7 > 0, то ряд (7.84) сходится, и сумму этого ряда можно
вычислить, воспользовавшись формулой суммы бесконечной гео¬
метрической прогрессии. Тогда

eq1x\q)= (7.85)
\-e~q eq-\

Так как = z, то

x\z)=—z-1
(7.86)

Пример 7.6
Найти и Z-ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ сигнала х[п, е] = ea("+£) т.
Подставляем х[п, е] в выражение (7.83):

Z){JC[«,E]}= ea{n+E)Te~qn.

п-О

Этот ряд сходится при Reg > аТ. В результате суммирования получаем:

eqeaTe

1 _e-<<q-uT)
~

eq _еаТ ‘

а Теех*(д,г) = (7.87)

При Е = О

eq
х*(д) = (7.88)

е“ -еаТ '

При е** = z

x*(z)= —
z-eaT

Итак, можно подвести некоторые итоги. Определяя решетчатую
функцию в соответствии с выражением (7.6) как последователь¬
ность 8-функций с «весами», равными значению функций диск¬
ретного аргумента х[п\, и применяя к решетчатой функции обыч¬
ное преобразование Лапласа, мы получили (дис¬
кретное преобразование Лапласа) функции дискретного аргумента
х[пТ\ в соответствии с выражением (7.81). Рассматривая функцию
х[п, е] как смещенную на е функцию дискретного аргумента п с па¬
раметром смещения е, получено D-ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ этой функции

(7.89)
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в соответствии с выражением (7.83). И наконец, после введения
обозначения z = eq получено Z-ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ функции дискрет¬
ного аргумента. Для того чтобы отличить изображение функции
дискретного аргумента от изображения функции при обычном пре¬
образовании Лапласа, используется верхний индекс * (см., напри¬
мер, выражение 7.84, 7.85, 7.86).

Рассмотрим далее свойства Очевидно, что они
аналогично могут быть сформулированы и для Z-ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.

1. Изображение линейной комбинации функций дискретного аргу¬
мента равно линейной комбинации их изображений.

т

Действительно, если х[п,е]= а,*/[п,е], то
/=0

D{x[n,е]}= |Xaixi 81 г
п-0 [/=0 J

т °° т
= Zа/ Z xiI”’ = aiXi &

-qn _

(7.90)

/=()/=0 п=0

2. Действительная (мнимая) часть изображения комплексной фун¬
кции дискретного аргумента равна изображению ее действительной
(мнимой) части.

Пусть

x[«,8] = x1[«,8]+ yx2[rt,8],

где х\ [п, е]= Re х[п,в] — действительная часть;

х2[п,г]= 1шх[«,я] — мнимая часть.

Тогда на основании (7.90) получаем:

D{x[n,8]} = D{xx[п,8]}+ jD{x2[п,е]}.

Откуда следует, что

Re D{x[n,8]}= D{x\ [п,8]};

Im D{x[n,8]} = D{X2[n,8]}.

(7.91)

(7.92)
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3. Если Z){x[rt,8]}= x (<7,е), то

к-1

D{х[п+к,в]}= е“к \х (я,е)-Уеяф,е] , (7.93)
/•=0

где к — целое число.

В частном случае, если х[0, в] = лс[1, в] = ... = х[к — 1, в] = 0, т.е.
функция дискретного аргумента при п < к тождественно равняется
нулю, то из (7.93) следует:

D{x[n + k,e]}= eqkх*(q,в).

Докажем справедливость выражения (7.94).
По определению

(7.94)

D{x[n + к,в]}= х[п + к,в]e~qn.
и=0

Обозначив п + к= г, получаем:

D{x[n+ М]}= 2 =
г=к

к-1 к-]оо

= еЧк \И e~qrx[r,t}- e-qrx[r,е] \ = eqk\ х (q,е)- e~qrx[r,е] ,

г=0 г=0 г=0

что совпадает с (7.93).

4. Если В{х[п,г]}= х*(д,е), то

D{х[п-к,в]}= е qk\x*(q,в) + х[-г,в]1. (7.95)
г=1

В частности, если 4—1? = 4—2, в] = ... = х[—к, в] = 0, т.е. х[п — к, в] =
= 0 при п < к, то из (7.95) следует:

D{x[n-k,e]}= e qkx*(q,E). (7.96)
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Докажем справедливость выражения (7.95). По определению

D{x[n-к,е]}= дк.
п=о

Обозначив п- к = г, получаем:

-I

D{x[n-k,e]}= Y, x[r,E]e~{r+k)g =е~дк \ях[г,Е]е~дг + х[г,г]е~дг\.
г--к

Учитывая, что

г=0 г=-к

X gr =J]x[-r,z]e дг,
г--к г=1

окончательно получаем:

х*(?,е)+24-ле]е-'"'|,-дкD{x[n-k,Е]}= е
г=1

что совпадает с (7.95).
Если выполнено условие х[п — к, в] при п<к, то выражения (7.94)

и (7.96) составляют содержание так называемой теоремы упрежде¬
ния и запаздывания: смещение независимой переменной оригинала
на ±к соответствует умножению изображения на e±qk. При ис¬
пользовании Z-ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ и выполнения указанного выше
условия смещению независимой переменной оригинала на ±к со¬
ответствует умножению изображения на z~k.

5. Изображение разностей. Пусть первая разность функции диск¬
ретного аргумента

Ах[п] = х[п +1]-х[п].

D-ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ Дх[я] имеет вид:

D{Ax[«]}= Y, Ьх[п\е~дп =ях[п+ \\е~дп - х[п]е~дп. (7.97)
п-Оп=О /7=0
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На основании свойства 3 (см. выражение 7.93)

£4»+l]e-«"=eV(<7)-40]}. (7.98)

/2=0

Следовательно, подставив (7.98) в (7.97), получаем:

D{Дх[л]}= eq{х*(q)-х[0]}-х*(q) = (eq -l)x*(q)-eqx[0]. (7.99)

Для второй разности а2х[п]= Ах[п + 1]-Ах[п].
D-ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ имеет вид:

Z){А2х[л]} = eq{D(Ax[n])-Дх[0]}-D(Ax[n]) =

= eq{(eq -l)x*{q)-eqx{ft)}-eqAx[0]-{(e9 -l)x*(#)-e9x(0)}.

Откуда

D{A2X[«]} = (eq -\)2x*(q)-eq (eq - \)x(0)-eqAx(0). (7.100)

Повторяя указанный процесс, находим изображение для к-й раз¬
ности функции дискретного аргумента х[п\:

к-1
Д*4п]}= (eq -\)к x\q)-eq (е“-1)

v=0

В частном случае, когда Ах[0] = А2х[0] = ... = Ая-1х[0] = 0,

DÿAkx[nÿ ={eq -\)к x\q).

На языке Z-ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ выражения (7.101) и (7.102) записы¬
ваются лаконичней:

*4-vAv;c[0]. (7.101)

(7.102)

к-1
Z[Ak х[п]}= zV(z)-z (z-l)*“1_v Avx[0]. (7.103)

v=0
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Если выполнено условие

Ах[0] = А2х[0] = ... = Дя-1х[0] = О, (7.104)
то

Z{Akx[n]}= zkx*(z).

6. Изображение сумм. По определению (см. выражение 7.71) сум¬
ма функции дискретного аргумента х[т\ имеет вид:

(7.105)

п-1

Л’[«]= X 4т] (7.106)
т=0

и Д[0] = 0. Первая разность этой суммы

п-1
AS[n]-Д[я + 1]-S[n]- х[т\- х[т\ = х[п]. (7.107)

т-0 т-0

Изображение этой разности в соответствии с выражением (7.99)
и с учетом того, что Д[0] = 0, имеет вид:

D{AS[n]}=(eg-\)S\q).

Вместе с тем, следуя (7.108), получаем:

(7.108)

(7.109)/){ДД[и]}= D{x[n\}= x*(q).

Подставив x*(q) в левую часть (7.108), получаем:

x\q)={eq -\)S\q).
Откуда

х*(д)S*(q)= (7.110)
eq-\

Итак, D-ÿÿÿÿÿÿÿÿÿÿÿ суммы функции х[п\ дискретного аргумента
равно частному от деления изображения этой функции на (eq — 1).

На языке Z-ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ

x\z)S\z)= (7.111)
z — 1
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Свойства 5 и 6, сформулированные для ана¬
логичны соответствующим теоремам, доказанным для изображений
производных и интегралов при обычном преобразовании Лапласа.

7. Умножение изображений и оригиналов. Рассмотрим вначале ум¬
ножение изображений. Пусть даны две функции х[п, в] и у[п, в].
D-изображение этих функций соответственно x*[q, в] и y*[q, в].

Образуем произведение:

оо

x*(q,e)-y*(q,E)=Yjx[n,e]e X т
•

п=О т=О

Произведя перемножение рядов в правой части равенства при
Re# > стс, где ос — наибольшая из абсцисс сходимости, получим

**(Я,Ф*(Я,е)- X е qn X у1т’eÿ~т’Ф

п 1
в][.

п=0 т=О

(7.112)
= 2>-qn

п=0 т=0

Откуда следует, что произведению изображений соответствует во
временной области дискретная свертка функций х[п, в] и у[п, в]. Дей¬
ствительно, из (7.112) следует, что D-преобразование любой из сумм

п

X х[т,е]у[п-т,г], (7.113)

т=О

или

п

X х[п-т,Е]у[т,г] (7Л14)
т=О

равно произведению изображений этих функций.
Обратим внимание на то, что положив в х[п, в] смещение в = О,

получим совпадение выражений (7.113) с (7.4), а (7.114) с (7.10).
Перейдем к умножению оригиналов. Можно доказать следующее:
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1
c+jn

Щх1[п,е\х2[п,е]}=— f xl(q-s,e)xl(s,e)ds,
2nj

c-jn

(7.115)

где x*{q), x2*(s), соответственно, Z>-изображения функций Xj[w, e] и x2[n, e].

Если acl и ac2, соответственно, абсцисса сходимости при опре¬
делении *!*(#) и x2*(q), то <7с2 < с < ст — ос], где с > стс1 + стс2. Выраже¬
ние (7.115) называют формулой свертывания в комплексной области.

8. Изменение периода временной дискретизации. Решим следую¬
щую задачу: дана функция х[пТ\ дискретного аргумента, ее изоб¬
ражение x*(q) вычислено. Требуется найти D-ÿÿÿÿÿÿÿÿÿÿÿ функ¬
ции х[пкТ\. Иными словами, требуется найти изображение функ¬
ции дискретного аргумента с измененным периодом временной
дискретизации.

Итак, по определению при q = рТ

ВДл]}=**(?)=я*[пТУп.
п=О

Тогда

D{x[ri),T]}=Y,xÿT*~qXn = (7.116)
п=О

Таким образом, чтобы найти изображение функции х[пкТ\ , нуж¬
но в изображении функции х[я] заменить аргумент q на \q и пара¬
метр Гна X Т.

9. Сумма ординат функции дискретного аргумента. Пусть функ¬
ция х[п\ имеет изображение x*(q), причем абсцисса сходимости ас < 0.
По определению

оо

**(?)= 2*№ 9П-
п=0

Откуда

lim x*(q)=Yx{nl
q—

(7.117)

п-0
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Аналогично для смещенной функции

Иш х*(q,e)= У х[п,г].
Q—

(7.118)
п=0

Таким образом, сумма ординат функции дискретного аргумента
равна значению ее изображения при q = 0.

В соответствии с (7.118) площадь под графиком функции х[п, в]
определяется выражением

1 со 1 1 1

х[п,в]яв = |х[п,в]dz- Jx*(0,z)dв.
ол=о о о о

(7.119)

10. Сумма квадратов ординат. Для определения суммы квадратов
ординат воспользуемся изображением произведения двух функций
дискретного аргумента согласно формуле (7.115), положив в ней

*1[я]= х2[п]= х[п], Xi (q) = х*2(q) = х*(q).

Тогда

C+jn
1

. [ x*(s)x*(q-s)ds,
2nj J

D{x1[n}) =
c-jn

(2oc<a, ac <c<a-ac).
(7.120)

Применив к (7.120) формулу (7.117), получим:

c+jnоо
1 J х*(s)x*(-s)ds.2>2[*]=9 .

„=0 2nJ
(7.121)

c-jn

Аналогично для смещенной функции

оо
J

C+jn

Ух2[л,в] = — [ x*(s,£)x*(-s,£)ds.
п=о

(7.122)
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Таким образом, сумма квадратов ординат равна значению интег¬
рала свертывания в комплексной области при <7 = 0.

В соответствии с (7.116) площадь под графиком функции х2[п, е]
определяется выражением

1 оо оо
J

C+jnl

{Х*2[«,е]я=я*2[л,е]</е—: J |х*(5,е)л:*(-5,е)я8я5. (7.123)

0«=0 п=0 c-jnO

11. Предельные значения функции дискретного аргумента. Предельное

значение функции дискретного аргумента определим как lim х[п,г].
П—>°о

Докажем, что

lim х[п,г]= lim{eq -l)x*(g,£).
q—>0

В соответствии с выражением (7.100)

(7.124)
>оо

D{Ах[п,е]}={eq -1)x*(q,е)-eqx[Q,е], (7.125)

где Дх[/7, е] — первая разность.

Согласно выражению (7.117)

оо

У Ах[п,е] = lim D{Ax[n,е]}= lim (eq -1)х*(q,е)-х[0,е]. (7.126)
<?->0 q—>0п=0

Но

V Дл;[я,е]=У {Дл:[л +1,я]-х[л,я]}= lim х[л,е]-х[0,е]. (7.127)
to to

Из (7.126) и (7.127) следует выражение (7.124), что и требовалось
доказать.

Начальное значение функции дискретного аргумента обозначим
как х[0, е].

Докажем, что

jt[0,£]=lim.x;*(<7,£).
q—>°°

(7.128)
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Первая разность

Ах[п-1,е]= х[п,е]-х[п-1,е].

Согласно (7.95) и (7.125)

D{Ax[n-1,8]}= e~q{(eq -l)x*(q,e)-eq*[0,e]} =

=(l-e~q)x*(q,e)-x[0,E].
(7.129)

Вместе с тем по определению

D{Ax[n -l,s]}= Ax[/?-1,e]e-qn

n-0

И

lim У Ax[n-\,e]e~qn =0.
q~*°°n=0

Следовательно, в соответствии с (7.129)

(7.130)

lim Т){Лх[/7-1,е]}= lim (1-е ?)л:*(#,е)-.х:[0,е] =
q—>oo q—>оо

= lim У(<7,е)-л:[0,е] = 0.
qÿ>°о

Отсюда вытекает справедливость выражения (7.128), которое и
требовалось доказать.

Итак, рассмотрены формулы прямого (полу¬
чение изображения по оригиналу), изложены свойства этого преоб¬
разования.

Обратное D-преобразование. С помощью обратного D-ÿÿÿÿÿÿÿÿÿ¬
вания можно получить оригинал по заданному изображению. Обо¬
значим обратное преобразование следующим образом:

x[n\ = D~'{x\q)),
или

x[n,e]= D 1{**(?,я)}•
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Пусть Im q
Л

Lx
х\д)=я4п]ея. Pc(7.131)

«=о
Re qПредположим, что особые точки

функции x*(q) комплексного пере¬
менного улежат левее отрезка L j дли¬
ной 2л, параллельного мнимой оси и
расположенного на расстоянии свпра¬
во от нее (рис. 7.19). Величина с — про¬
извольная положительная постоян¬
ная, большая абсциссы сходимости ас. Умножив обе части (7.131)
на eqm (т — целое число) и проинтегрировав их вдоль отрезка Ьл,
получаем:

с

—я

Рис. 7.19. Отображение числа q
на комплексной плоскости

с+Ул С+у'Я Г ОО

J x\q)eqmdq =J qmdq =
с-у'я ln=0

c+jn

c-jn

(7.132)

= 2>[n]|
/7=0 c-jn

Перестановка операций интегрирования и суммирования закон¬
на, так как с < ос— абсциссы сходимости лс[л]. Если тФ п,

т L

с+ jn - с+ jn
1 _e-ÿn-m)]= 0J e-ÿ"-m)dq = e-q(n-m) п-т)

п-т п —-1с—у'яс-уя

Если п = т, то

с+у'л

I dq =(c+ jn)-(c-jn)= 2nj.

c-jn

Следовательно, из (7.132) получим:

с+ jn

J х*(q)eqmdq = x[m]2nj

c-jn
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или, заменяя переменную т на переменную п, окончательно имеем:

1 с+№
х[п]= - f x\q)eqndq.

2ÿC-jn
(7.133)

Аналогично, для смещенной функции дискретного аргумента

c+jn

*[п,е]= -Ъ I x\q,€)eq"dq.
2nj

c-jn

(7.134)

Эти формулы, называемые формулами обращения, решают задачу
обратного Они аналогичны формуле обращения

в обычном преобразовании Лапласа.
Предположим, что изображение x*(q) может быть приведено к

виду

H\q)x\q)= (7.135)
G\q) ’

где H*(q) = ciQ+ aÿeq + +...+ a/elq ;

G (q) = bo +l\eq +b2e2q +...+ brerq, степень / меньше степени г.

Обозначим еЯ = ъ, тогда

H*(q) = % + <z1z +...+ fl/z/;
G (yj) — bfl + byz + ...+ brzr.

Предположим далее, что уравнение

G*(z) = О (7.136)

zr). Тогда можно доказать, что

при п- О

имеет только простые корни (zj, z2,

О

Н (zv) „-I

LG*(ZV)
V ’

х[д]= (7.137)

v=l

dG*
G (zv) —где

dz
z = zv
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Равенство х[0] = 0 следует из того, что в соответствии с (7.128)
х[0] = 0, когда степень многочлена знаменателя изображения (7.135)
выше степени числителя многочлена.

Если степень многочлена числителя равна степени многочлена
знаменателя, то, разделив числитель на знаменатель, получаем сум¬
му двух составляющих, одна из которых число А, другая — дробно¬

рациональный остаток Hp(z) , где степень многочлена //Q(z) мень-
G (z)

(f (z), т.е.ше степени многочлена

/,z)=,+4ÿ.
G (z)

В соответствии с выражением (7.128), учитывая, что z = eq и, сле¬

довательно, lim z = °o , получаем:
>оо

(7.138)

*10] = lim х (z) = А + lim
G (z)

Предел второго слагаемого при z — равен 0, так как степень мно¬
гочлена его знаменателя выше степени многочлена числителя. От¬
сюда формула (7.138) имеет вид:

= А.
Z—>°° Z—»°°

tf0*(z)
х (z) = x[0]+ (7.139)

G (z)

Рассмотрим далее общий случай, когда уравнение (7.136) имеет
кратные корни:

z j кратности гу,
z2 кратности гу

zs кратности г5.
s

Причем равно r-ÿÿÿÿÿÿÿ многочлена G*(z), а степень (7*(z)
/=1

выше степени #*(z).
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Тогда

s rv_i „(Ю
4«]=2ZV-ÿ

у=1ц=0

zÿ, (7.140)

где «(и) = я(я — 1)(я — 2) ... (я — ц + 1); яя) = 1,

H\z)
(rv -1LA-1)! dzrÿ~x \ zG\z)

dr-~ÿ~1 •(z-zv)rv (7.141)СУЦ = = ZV.
z

В частном случае, когда все корни различны, т.е. rv = 1, р = 0, S= г,

Н\zv)
cv0 “

*

zvG (zv)

Следовательно,

b H\zv) zn yHAZvlzn-l'
G (zv) V

4n]= X
V—l zvC (Zy )

что при n > 1 совпадает с (7.137); при п = 0 х[0] = 0,что следует из
(7.137), когда степень многочлена знаменателя (7.135) выше степе¬
ни многочлена числителя.

Если степень многочлена знаменателя (7.135) равна степени мно¬
гочлена числителя, то результат деления числителя на знаменатель —
многочлен нулевой степени — это значение оригинала при п = 0 (см.
выражение 7.139). Оригинал второго слагаемого выражения (7.139),
когда имеются кратные корни, при п > 1 находится по формуле (7.140).

Преобразование изображений в смещенную функцию х[п, в]
дискретного аргумента осуществляется аналогично. При этом в трак¬
туется как параметр.

Пример 7.7
Пусть

x*(q,е) = (7.142)
eq-ea
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Требуется найти оригинал-функцию х[п, е].
Введем обозначения eq = z. Тогда

as
*/ ч ze

х (z, е) =--.
z-ea

Здесь степень числителя равна степени знаменателя. Разделив числитель
на знаменатель, получим:

(7.143)

Лаеx*(z,e) = eaE + z-ea
В соответствии с (7.139)

х[0,Е]=еае. (7.144)

Для вычисления х[п, е] при п > 1 определим корни многочлена знаменателя:

z — = 0.
Откуда Zj = е01.
В соответствии с выражением (7.137)

ЛаЕ еа(п-1) =еа(п+Е)х[д,е]=

7.7. Определение реакции системы, модель которой задана
линейными разностными уравнениями, на входной сигнал

Моделью цифрового устройства, когда погрешностью от кванто¬
вания по уровню можно пренебречь, является оператор, преобразу¬
ющий входной сигнал и[пТ\ в выходной сигнал х[пТ\ (см. выраже¬

ние (7.62)). Если оператор является линейным и стационарным, то
процессы в цифровом устройстве могут быть описаны линейными
разностными уравнениями с постоянными коэффициентами. Опре¬
деление реакции системы на заданный входной сигнал сводится к ре¬
шению неоднородного разностного уравнения. Рекуррентная проце¬
дура решения такого уравнения описана в п. 7.3. В данном разделе
рассмотрим иной способ решения, базирующийся на использовании
дискретного преобразования Лапласа (/)-преобразования) и Z-пре¬
образования.

Пусть модель системы задана разностным уравнением (7.73):

ацх[п + г]+ aix[n + г-1]+...+ ar_ix[n +1]+ агх[п\ = и[п\ ,

где и[пТ\ — сигнал на входе системы;
х[пТ\ — сигнал на выходе системы.
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Начальные условия известны: х[0] = х0, х[\] = хх, x[r— 1] = хг_я.
В соответствии с теоремой упреждения (см. выражение (7.93) при

е = 0)

к-\

D{x[n + k]}=eqk\x\q)~Y, e~qrx[r\ .

r=о

С учетом этого соотношения применим D-ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ левой
и правой части разностного уравнения:

г-1
[%eqr +а\е +...+dr_xeq +аг {д)-аяУ eq(ÿr

/=о

а\ eq{r~]~l)x[i]-...~ ar_xx[0]= u\q).

q{r-\)

r-2

i=0

Откуда D-ÿÿÿÿÿÿÿÿÿÿÿ сигнала на выходе системы имеет вид:

и (q)
*В (q)x*(q) =

аяеС1' + dxeqÿr +...+ ar_xeq +dr d$eqr + axeq<<r + ...+ ar_xeq +dr

где первое слагаемое определяет процессы в системе, вызванные входным сиг¬
налом при нулевых условиях, второе — начальными условиями:

Я*(?) = а0 l'e4(r-l)x{i]+ о, z еч(г~хч)хЩ +..+ аг_,40].
/=0 /-0

При нулевых начальных условиях B*(q) = 0.
Для перехода от изображения к оригиналам удобней вначале пе¬

рейти к Z-ÿÿÿÿÿÿÿÿÿÿÿ, обозначив eq = z.
Тогда

u\z) *В (z)*х (z) = г-1dÿzr +d\Zr 1 +...+ dr_xZ + dr %z> +dXZ + ...+ Qp—i Z + dr

где

r-2r-1
B\z) = d0Jÿzr4x[i]+ flj У zr~l4x[i]+ ..+ ar_xx[0].

i=0 i-O
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Переход от изображения x*(z) сигнала на выходе системы к ори¬
гиналу х[п] осуществляется в соответствии с (7.137), когда корни
многочлена знаменателя — характеристического многочлена — раз¬
личны. При наличии кратных корней используется формула обра¬
щения (7.140).

Пусть модель системы задана разностным уравнением (7.76):

а$х[п\ + а\х\п-1] + ... + аг_\х[п-г + 1] + агх[п-г] = и[г].

Начальные условия известны:

х[-1] = x_i ,х[-2]= х_2, ...,x[-r-l]= x_r_i, х[-г]= х

В соответствии с теоремой запаздывания (см. выражение (7.95)
при 8 — 0)

—г

*‘(9)+2У**н-]|.D{x\n-k\) = e~qk
Г=1

С учетом этого соотношения применим левой
и правой части разностного уравнения:

(<7Q +ще~д + a2e~2q +...+ are~rq)x (<7) + я1х[-1]+

+...+ are~rq eqiх[-/] j= и (q).j]eqix[-i]-2q
+a2e

i=1 /=1

Отсюда D-изображение сигнала на выходе системы имеет вид:

u{q)
*В (Я)

х (д) =
QQ + fl + Q2ÿ

q
Qf.6 + + Q2Q

q
Qf.6

где первое слагаемое определяет процессы в системе, вызванные входным сиг¬
налом при нулевых граничных условиях, второе — начальными условиями:

B*(q) = -alx[-\\-a2e~2q .-are~qr .
/=1 /=1

Обозначив = ги умножив числитель и знаменатель (7.146) на
zr, получаем:

и (z) В (z)* у
X (z) = z . (7.147)

a§zr +а\т! 1 +...+ #,. dQZr +d]Z' *+...+ arг-1
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При нулевых начальных условиях х[—1] = х[—2] = ...= [—г] = О
второе слагаемое выражения в фигурных скобках равно 0.

Переход от изображения x*(z) к оригиналу х[п\ осуществляется
по формуле обращения (7.137) или (7.140) вначале для изображения,

записанного в фигурных скобках. Затем к аргументу полученного
оригинала п прибавляют г, что соответствует множителю zr, стояще¬
му перед фигурной скобкой.

Рассмотрим решение разностных уравнений на простых примерах.

Пример 7.8
Разностное уравнение, являющееся моделью системы, задано выражением

«0Дх[я]+ а[х[п\ = и[п], (7.148)

Входной сигнал

и[п] = \[п\. (7.149)

Граничные условия х[0] = XQ.
Требуется найти реакцию системы на заданный входной сигнал.
Преобразуем разностное уравнение (7.148):

До{х[п +1]-х[п]}+ а[х[п\ =1[л].
Откуда

(7.150)а$х[п + 1]+ а\х[п\ =1[л],

где <ZQ — a'Q — o'Q.

.D-ÿÿÿÿÿÿÿÿÿÿÿ входного сигнала 1[я] уже было получено в примере 7.4
(см. выражение 7.86):

eq
Л{1М}=

eq-\

Запишем D-ÿÿÿÿÿÿÿÿÿÿÿ левой и правой части уравнения (7.150):

а0я{х*(<7)-х0}+ й1х*(я)= 6

eq-\

Откуда изображение сигнала на выходе системы имеет вид:

+
_яо*И_

(е*7-!)яeq+al) a0eq +а{

eq
x\q)=

Обозначив eQ = z, получаем:

1
fl0*0z

(z-l)(«0Z+ «!) fl0Z + flj’
zX*(z)=
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а\Корни многочлена знаменателя первого слагаемого равны Zj = 1, z2 = —
«О

Корень знаменателя второго слагаемого есть z2. Используем формулу об¬
ращения (7.137). Вначале будем обращать первое слагаемое. В соответствии
с (7.137)

dG\z)G*(z)=(z-l)(tf0z + «!);

dG*(z)

= (fl0z + fl1) + (z-l)fl0;
dx

dG*(z)
-~(a\ +flo)-~a0 +ab

dx dx
z=——Z=1

%

Тогда оригинал первого слагаемого в соответствии с (7.137) имеет вид:

С1\
\я-1 \«

1% а\

ао +а\ ао + а\ у % а0+а\ а0

Получим далее оригинал второго слагаемого. Так как степень многочлена
числителя равна степени многочлена знаменателя этого слагаемого, то внача¬
ле разделим числитель на знаменатель:

a0xQz а\ХО=*о-
floZ + Я, <30Z + fl]

а\хо найдем в соответствии с (7.137):Оригинал изображения -

«QZ + flj

. dG\z)
G*(z) = а0z + д,; = , и оригинал имеет вид:

dx

\П~1 п
а\х{) а\ а\= *0ао у а0 У а0

В соответствии с (7.139) оригинал второго слагаемого равен:

при /7 = 0,*0

Лп
а\ при п>\.х0
а0 )

271



Для получения оригинала второго слагаемого можно было рассуждать ина-

OQXQZ «0*0есть оригинал изображенияче: оригинал изображения , в ко-
«02 + «1

тором следует заменить в соответствии с теоремой об упреждении п на п+1.

«02 + «1

«0*0 найдем в соответствии с (7.137):Оригинал изображения
«02 + «1

dG\z)
G*(z) = a0z + ax;

корнем уравнения G*(z) = 0 является г х = —ах/а§, тогда оригиналом изображения

-«о;

л-1
«0*0 «0*0 «1по (7.137) является . Заменяя п на я+1, получаем ори-

«02 + «1 «0 «0
л

«Iгинал второго слагаемого х0 1 —
способом.

Следовательно, результат решения поставленной задачи — оригинал х[п]
имеет вид:

, что совпадает с полученным ранее иным
«о

\Л л
1 «1 «1*М = 1- + *о —

«0 +«1 «о «о

Рассмотрим частный случай решения, когда % -1;а[ = 2;дг0 =1. При этом

% =°о =1> «1=4-4=2-1=1; И х[я]=|[1-(-1)"]+(-1)".
Откуда следует:

1 при я = 0,2,4,6, ...;

0 при п = 0,2,4,6, ...;
х[п]=

Пример 7.9
Разностное уравнение, являющееся моделью системы, задано выражением

a[Vx[n\ + а'0х[п] = и[п\ . (7.151)

Входной сигнал и[п\ = 1[и].
Граничные условия х[—1] = х_х.
Требуется найти реакцию системы на заданный входной сигнал.
Преобразуем разностное уравнение (7.151):

«1{*[«]-*[«-1]} + «о*[«]= •
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Откуда

а0х[п\-а]х[п-\\ = \[п\,

где а0 =а{ + а'0;а1 =а{.
Запишем D-преобразование левой и правой части уравнения (7.151), учи¬

тывая, что изображение и\п\ = 1[л] уже известно (см. 7.85):

eq
я0х {q)-a\e qx*(q)-ci\x[-\\ =

eq-\

Откуда

eq
x\q)=

(eq -\){aQ-axe q) a0-a{e
q

Обозначив = z и умножив числитель и знаменатель этого выражения
на z, получаем:

д*Н1z*л: (z) = z
(Z — 1)(Z70Z — Z7j )

Перейдем от изображения, записанного в квадратных скобках, к оригина-

а\лу. Корни знаменателя первого слагаемого Z\ = 1; z2 = —.
Тогда в соответствии с (7.137) получаем:

“О

. dG*(z)G*(z) =(z-\)(a0z-al);

dG*(z)

= (a0z-al)+(z-\)a0-,
dx

dG\z)
~a\ +ao--a0 -ab

dxdx
Z=Z| z=z2

В соответствии с (7.137) оригинал этого изображения имеет вид:

а\
/7-1 Г \п

1 , %
ао~а{ «i-a0Uo

а\ (7.152)
а{) -я, а() )

В соответствии с (7.137) оригинал второго слагаемого в фигурных скобках
изображения x*(z) имеет вид:

л-1 /7

% Uo
а\=4-1] -Ч • (7.153)

ка0
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Суммируя (7.152) и (7.153) и заменяя п на л+1, получаем искомое решение:

п+1 я+1
1 а\ +4-1] — -4п]= 1-

«о-«1 % %

Рассмотрим случай, когда разностное уравнение имеет вид:

%х[п\ + ахх[п-1]+...+ ar_x х[п-г +1]+ агх[п-г]=
= bQu[n]+1\х[п-1]+...+ bi_{u[n -I + \]+b/u[n-l],

где /< г.
Входной сигнал подается на вход системы в момент времени п = О,

т.е. и[п] = 0 при п < О, начальные условия — нулевые. Для нахожде¬

ния решения разностного уравнения используем
левой и правой частей этого уравнения:

a0x*[q]+ axe qx*(q) +..+ ar_xe q(r l)x*(q)+are qrx\q) =

= b0u {q)+bxe~qu {q)+...+b,_xe~q(l~X)u {q)+ble~qlи (q).

Откуда, обозначив z = еУ, получаем:

+ byz 1
+ b2z

2
+...+ b[ei -/

x*(z) = u(z) = w\z)u\z), (7.154)
-2-1 -r

a$+axz +a2z +...+arz

где

b0+b\Z 1+b2z 2+...+ b/e
1

W\z) = (7.155)
-2-1 -r

a0+axz + a2z +...+arz

Из (7.154) следует, что

*. . X*(z)
W (z)=-rÿ-

и (z)

Выражение (7.156) является дискретной передаточной функцией
системы, т.е. отношение изображения выходного сигнала к изобра¬

жению входного сигнала при нулевых начальных условиях.
Изложенное позволяет сделать следующий вывод — реакция си¬

стемы, моделью которой является разностное уравнение, есть обрат-

(7.156)
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ное Z (или /я-преобразование произведения дискретной передаточ¬
ной функции и изображения входного сигнала:

x[n\ = Z-\w'(2)u(z)]. (7.157)

7.8. Передаточная функция разомкнутой линейной
импульсной системы

Амплитудно-импульсная модуляция Iрода (АИМ I). Сигнал хвых[я, е]
на выходе линейной импульсной системы, когда на ее вход посту¬
пает входной сигнал *вх(0 при амплитудно-импульсной модуляции
I рода, определяется выражением (7.4) или (7.10). Возьмем
образование от левой и правой частей (7.4):

Щхвых[п,г]}= о\ I хвх[тТ]к[п-т,е][.
im-0 J

В соответствии с выражением (7.112) D-ÿÿÿÿÿÿÿÿÿÿÿ дискретной
свертки функции хвх\тТ\ и к[п — т, е] равно произведению D-ÿÿÿÿ¬

ражений этих функций. Следовательно,

—
где W*{q, е) = D{k[n, е], х*вх(<7» = D{xBX[nT\}.

Откуда передаточная функция разомкнутой линейной импульс¬

ной системы

(7.158)

*вых(?.Е)

х1Ая)
(7.159)

Пусть разомкнутая импульсная система с АИМ I рода имеет эк¬
вивалентную передаточную функцию непрерывной части (см. 7.3):

(7.160)W3(p) = S{p)W{p),

где S{p) — изображение по Лапласу функции, описывающей форму импульса;
W(p) — передаточная функция непрерывной части импульсной системы.

Тогда эквивалентная импульсная переходная функция непрерыв¬

ной части определяется как обратное преобразование Лапласа от W3(p):
1k3(t) = L-l{W3{p) = S{p)W{p)}.
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После перехода к относительному времени / = (п + в) Т, п = 0, 1,
2, О < е < 1 получаем кэ[п, е].

Передаточная функция разомкнутой импульсной системы с
АИМ I рода в соответствии с (7.158) определяется выражением

W*(q,B) = D3{k[n,B]}. (7.161)

В частном случае, когда импульсы прямоугольной формы дли¬
тельностью t =уТ, где 0 < у 1, эквивалентная импульсная переход¬
ная функция непрерывной части системы имеет вид (7.14). Тогда
передаточная функция разомкнутой импульсной системы с АИМ I
рода и прямоугольными импульсами

D{hA[n,e\-h[n-l,1+ е-у]} при 0<s<y;

D{hA[n,E]-h/[n,E-y]}
W*(q,€) =

при уяя<1,

где hA[n, в] — переходная функция непрерывной части системы.

Изображение сигнала на выходе системы при заданном входном
сигнале определяется выражением (7.158). Оригинал сигнала на вы¬
ходе системы получаем как обратное изображе¬

ния (7.158).

Пример 7.10

к
Дана передаточная функция К(р) =-

V+1
импульсной системы с АИМ I рода и прямоугольными импульсами длитель¬
ностью уТу < 1.

Требуется найти передаточную функцию системы и изображение сигнала
на выходе, когда входной сигнал хвх(/) = 1(/).

Импульсная переходная функция к[п, в] приведенной непрерывной части
этой системы получена в примере 7.1 и определяется формулой (7.14). Приме¬
няем Д-преобразование к к[п, в]. В примере 7.4 (см. выражение 7.85) получено:

непрерывной части разомкнутой

eq
D{M) =

eq-\

В соответствии с теоремой запаздывания

e~qeq _ 1

eq-l eq-\
D{\[n-1]}=
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В примере 7.5 (см. выражение 7.87) получено:

еЯеаТе/){ еа(п+г)Т

eq+ea

В соответствии с теоремой о запаздывании

—а л„ыТге чече еаТгZ)[c }а(я-1+е)7’

eq+ea eq+ea

Воспользовавшись этими соотношениями применительно к (7.14), получа¬

ем искомую передаточную функцию разомкнутой импульсной системы:

т
eqe Тфeq eqe~q eqe~q_

QтW\q,i)= eq-10<e<y
eq-e Тф

e Тф (eq -e Тф

eq-e Тф

).
=1-

T

eq-e Тф

T

eqe Тфeq eq eq
К(д,г) = Ф

T
6

eq-\y<e<l
eq-e Тф 7,

Фeq -e
T

еТф
т

eq
-1

eq-e Тф

Изображение сигнала на выходе системы, когда на ее входе 1(/), равно:

eq
К (q,в) при 0<е<у;

eq-\
*вых(<7) = <

eq
К (q,e) при у<е<1.

[eq-l
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Получим далее передаточную функцию для случая, когда разом¬
кнутая импульсная система имеет вид, приведенный на рис. 7.20, а.
Здесь рассматривается параллельное включение непрерывных час¬
тей. Как следует из приведенной структурной схемы,

х1ыкМ) = К*я,г)х*ъя), *' = Ъ2,3, ...,я.

Так как
‘=g

•*вых(0 -яВЫХ / (О?

1=1
то

i=g

— Kj (q,г) xBX (q).
/=1

а

Щр)

*вых2ИЭ ЩР)

"явых g
Щр)

б
*Bbixl

wx{p)ИЭ

Хвых2 •яВЫХ*вх
Щр)ИЭ

•явых#wg(p)ИЭ

Рис. 7.20. Разомкнутая импульсная система с параллельным включением звень¬
ев непрерывной части (а); структурная схема параллельного включения разомк¬

нутых импульсных систем (б)
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Откуда следует, что передаточная функция такой системы равна
сумме передаточных функций параллельных ветвей:

‘=8
К*(д,г)= Ук*(д,г). (7.163)

/=1

На рис. 7.20, 6приведена структурная схема параллельного вклю¬
чения разомкнутых импульсных систем. При синхронной работе
импульсных элементов она эквивалентна схеме с параллельным
включением непрерывных частей (см. рис. 7.20, а). Следовательно,
передаточная функция параллельно включенных разомкнутых им¬
пульсных систем равна сумме передаточных функций этих систем.

Получим далее передаточную функцию последовательного вклю¬
чения разомкнутых импульсных систем. Структурная схема для это¬
го случая приведена на рис. 7.21, а.

а
"*вых "явых g•*вых! Хвых2•*вх

ч иэ н иэ Н К—Н иэ hi К
б

*вх >1 ч
wxip) — к2(р) х*р)иэ

Рис. 7.21. Структурная схема последовательного включения разомкнутых им¬
пульсных систем (а), разомкнутая система с последовательным включением

звеньев непрерывной части (б)

Рассматривается синхронная работа импульсных элементов.
Изображение сигнала на выходе первой системы:

-явых \(0) — -яВХ (#>я)?

аналогично изображение сигнала на выходе /-й системы:

*вых i(?) = *вх /(<iWi (Я,е), i =1,2,...,g.

Так как

*ВХ / (я) = *вых(/—1)(д)
’

i =12,...,g,

(д) = х*х{g)\W\(g,В) •W2 (д,в) ...•W*(д,е)].то хм.|\
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Откуда передаточная функция последовательного соединения
разомкнутых импульсных систем равна произведению передаточных
функций этих систем:

W*(q,е) = П W*(q,е). (7.164)
/=1

Этот вывод нельзя использовать при наличии одного импульсного
элемента и последовательного включения звеньев (см. рис. 7.21, б).
Для такой структурной схемы эквивалентная передаточная функция
приведенной непрерывной части системы

W3(p) = Wx(p)W2(p)..Wg{p).

Соответствующая импульсная переходная функция

k3(t) = L-\W3(p)]=L-'[Wl(p)W2(p)..Wg(p)].
Тогда передаточная функция импульсной системы, структурная

схема которой приведена на рис. 7.21, б, определяется выражением

W*{q,t)= D{k3[n,z\}.

Амплитудно-импульсная модуляция IIрода (АИМ II). Получим
далее изображение сигнала на выходе разомкнутой линейной им¬
пульсной системы с амплитудно-импульсной модуляцией второго
рода (АИМ II). Структурная схема модели системы приведена на
рис. 7.13. При обычном преобразовании Лапласа изображение
сигнала на входе линейной части системы при АИМ II имеет вид:

ОО (п+у)Т

У [ xm(t)e-p'di.
п=0 пТ

Перейдя к относительному времени t= (п + г) Ти обозначив рТ= q,
получим:

(7.165)

с» уТ

L{l[t = (n + E)T]}= X j xBX[(n + e)T)e~P(n+e)td(eT) =
п=О О

1"Z \xm[n,tÿ-qne-qtd
п=О О
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Изменяя порядок интегрирования и суммирования, получим:

Ц1[п,г\}= т\\ хвх[п,г]е~дп\
О 1/1=0 J

e~qedz,

где в правой части выражение в фигурных скобках есть D-преобразование фун¬

кции хвх[п, е].

Следовательно, изображение в смысле обычного преобразования

Лапласа сигнала на входе непрерывной части импульсной системы
с АИМ II имеет вид:

Y

Л/[«,Е]}= Г Jx*x(?,E)e-?eflfe.
о

(7.166)

Непрерывная часть импульсной системы с АИМ II рода задана
передаточной функцией

Щр)= \k(t)e~ptdt,
о

где k(t) — импульсная характеристика непрерывной линейной части.

После замены переменных t = TT и q = рТполучаем правило пе¬
рехода от передаточной функции с переменной р к передаточной
функции Wfl(q) переменной q:

wHÿ=jw[p=j]- (7.167)

Изображение сигнала, в смысле обычного преобразования Лап¬
ласа, на выходе линейной импульсной системы с АИМ II рода опре¬
деляется произведением изображения сигнала на входе непрерыв¬
ной части (7.166) и передаточной функции (7.167), т.е.

*выхн(<7)= {*вх(?>е)е qedz Wÿp = (7.168)
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Если пренебречь изменениями верхней части импульса за уТ, т.е.
свести АИМ II к АИМ I при прямоугольных импульсах длительнос¬
тью уТ, то изображение (7.168) примет вид:

Y

*выхн(?)= \x*BX(q,E = 0)e~qEd£ W(q). (7.169)

.о

Рассмотрим множитель в квадратных скобках:

Y У

\x*BX(q,0)e~qEde = x*BX(q,0) je~qEdz = xBX[n]e
0 0 л=0

1-ÿY-qn -. (7.170)
Яl_o

Подставив (7.170) в (7.169), получим:

*вых11(Я) *BX (w) *

to Я

«=о L ?

оо

W{q)e~qn =

(7.171)е~чу е~дп
'

Я

1 #4?)
Так как Z, = 1 — переходная функция непрерывной

Я
части системы, то

1 K{q)
=hA[t-yT).Г

Я

Переходя в (7.171) к оригиналам, получим:

m

*вых11(О = Z*вх ["1{АЛ [f -яГ]-Ал[/-Я/-уГ]},
я=0

t
где — = m + e,m = 0,l,2,...,0<e<l.

После подстановки в это выражение относительного времени t =(т +
+ в) имеем:
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JÿxBX[n]{ hA[(m-n + e)T]

-hA [[(w-«-l)+ (l + e-y)]77]} при 0<e<y;

Z*Bx[n]{hA[(m-n + e)T]-

hA[(m-n +e-y)T]}

n-0

Хвыхи1тя ='

n-0

при Y < 8 <1,

что совпадает с точностью до обозначений с выражением хвых1 для
разомкнутых импульсных систем с АИМ I рода и прямоугольными
импульсами (см. выражение 7.15).

7.9. Функциональная схема и математическая модель
цифровой системы управления с обратной связью

Функциональная схема типичной цифровой системы управления
приведена на рис. 7.22. Сигнал на выходе аналогового объекта управ¬
ления преобразуется измерительным устройством ИУ в нормирован¬
ный сигнал который, в свою очередь, поступает на вход АЦП.

Дискретизированный по времени и квантованный по уровню сиг¬
нал с выхода АЦП в цифровой форме поступает на второй вход

У5=1 У2Xи ВУ СУ ОУЦАП
5 1 2

Ул УъАЦП ИУ
4 к

Уз
Цифровое
устройство
управления

Шина сигнала
синхронизации

Рис. 7.22. Функциональная схема замкнутой цифровой системы
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вычислительного устройства ВУ. На первый вход ВУ поступает сиг¬
нал управления и. Входной сигнал и постоянен в системах стабили¬
зации, изменяется по заданному закону u(t) в системах программно¬
го управления, является случайной функцией в следящих системах.
Вычислительное устройство определяет разность сигналов и[пТ\ и
у4[я7],т.е. А[пТ\ = и[пТ\ — у4[л7], где п = 0, 1,2, ..., Г— шаг временной
дискретизации, и в соответствии с заданным законом управления
преобразует рассогласование Д[«7] в управляющий сигнал 1[пТ\, т.е.

l[nT]= L{A[nT]}, (7.172)

где L — оператор преобразования.

Так как сигнал 1[пТ\ на выходе вычислительного устройства по¬
лучен в цифровой форме, а объект управляется аналоговым сигна¬
лом, то 1[пТ\ преобразуется из цифровой в аналоговую форму циф¬
ро-аналоговым преобразователем (ЦАП). Для согласования по
мощности к выходу ЦАП подключается согласующее устройство
(СУ), выходной сигнал с которого поступает на вход объекта уп¬
равления. АЦП, ЦАП, ВУ обычно конструктивно реализуются в од¬
ном блоке, называемом цифровым устройством управления. Синх¬
ронизация работы АЦП, ЦАП, ВУ осуществляется генератором вы¬
числительного устройства с тактом Т.

Согласующее устройство, объект управления ОУ, измерительное
устройство ИУ являются непрерывными инерционными объектами,
описываемыми дифференциальными уравнениями (напомним, что в
этой книге рассматриваются системы, моделью которой являются
только обыкновенные дифференциальные уравнения, дифферен¬
циальные уравнения в частных производных не рассматриваются).
Вычислительное устройство моделируется разностными уравнени¬
ями. Временная дискретизация сигналов, поступающих на вход
объектов, которые описываются дифференциальными уравнения¬
ми, моделируется идеальным импульсным элементом, на выходе
которого решетчатая функция — последовательность 8-функций,
следующих с тактом Т, «веса» которых равны значениям дискре¬
тизируемой функции при / = дГ(см. п. 7.2). Ранее АЦП моделировал¬
ся как статическая нелинейность с зависимостью между входом и
выходом (см. п. 3.2). При таком подходе преобразование «аналог-
цифра» происходит мгновенно. Реальные АЦП имеют конечное
время преобразования. В работе [7] показано, что цифровой экви-
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валент в момент времени t = пТ, если пренебречь погрешностью
квантования по уровню, пропорционален среднему значению пре¬
образуемого сигнала за некоторый промежуток времени 7об, кото¬
рый находится между моментами / = (п— 1)Ти t= пТ. Далее в соот¬
ветствии с функциональной схемой сигнал на входе АЦП будем
обозначать у3, на выходе — у4.

Для АЦП «напряжение—цифра» с устройством выборки и хране¬
ния (УВХ)

пТ
1 |y3(t)dt,У4["Т]= (7.173)

«Т’-'об

где tQQ — время интегрирования в УВХ.

Для АЦП с промежуточным преобразованием в частоту

т

J Уъ(№.
1

(7.174)Уа[пТ\ = т
(п—\)Т

Для АЦП с промежуточным преобразованием в длительность
импульса с интегральной ШИМ

(л-1)Г+to6
у4[пТ]= — J Уъ(*)Ж-

*°6 (п-1)Т

В наборе рассмотренных ранее моделей отсутствует модель пре¬
образования функции y(t) непрерывного аргумента t в функцию
у[пТ\ дискретного аргумента t = пТ. Рассматриваемый ранее им¬
пульсный элемент преобразует х(/) в решетчатую функцию. Это
преобразование удобно, когда дискрети¬
зированный сигнал поступает на вход си¬
стемы, описываемой дифференциальны- y{t)

ми уравнениями. Если дискретизирован¬
ный сигнал поступает на вход системы,
описываемой разностными уравнениями,
то необходимо формально осуществить
преобразование y(t)—>y[n 7]. На функцио¬

нальной схеме (рис. 7.23) приведен им¬
пульсный элемент (не «идеальный», опи-

(7.175)

у[пТ\

Рис. 7.23. Обозначение им¬
пульсного элемента (не
«идеального»), преобразую¬
щего непрерывный сигнал

y(t) в дискретный у[пТ\
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санный ранее), на вход которого подана функция y(t) непрерывно¬
го аргумента, на выходе у[пТ\ — функция дискретного аргумента.

Тогда участок схемы между точками 3 и 4 (см. рис. 7.22), содержа¬
щий АЦП, моделируется в соответствии с функциональной схемой,
приведенной на рис. 7.24.

(1) /Г
У4Уз Wx{p)

(2)
>’3 •Уз

Рис. 7.24. Модель участка функциональной схемы рис. 7.22 между точками 3 и 4

Первое звено с передаточной функцией Wx{p) определяется спо¬
собом построения АЦП. Для АЦП, в котором временем преобразо¬

вания «аналог—цифра» можно пренебречь, Wx{p) = 1. При этом

Уз (0= Уз(7). Нелинейный элемент реализует операцию квантова¬
ния по уровню в соответствии с выражением (см. п. 3.2). Если по¬

грешностью квантования по уровню можно пренебречь, то у32я = уя.

Импульсный элемент осуществляет временную дискретизацию,

преобразуя уяр ву4[пТ\. Итак, при «мгновенном» преобразовании

«аналог—цифра» и при линеаризации статистической характерис¬
тики нелинейного элемента, моделью рассматриваемого участка
функциональной схемы является импульсный элемент.

Рассмотрим моделирование АЦП «напряжение—код» с устрой¬

ством выборки-хранения (УВХ). Первое звено модели в соответствии
с (7.173) реализует преобразование

t
(!) _J_ J у3(ЦЛ.Уз

'об

Так как у3Ц) = 0 при t < 0, то

t

\уъ{№- |у3(/-/об)Л
э о

<i)=_L

'об о
Тз

Применяя преобразование Лапласа к левой и правой частям это¬
го выражения, получаем:
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1 уг(р)(l-e-**)
У3)(р) =

*об р

Откуда

_Уъ\р)_ 1 {\-e~pt°*)

Уз (Р) *об
Щр) (7.176)

Р

Следующие два звена модели остаются неизменными.
Для аналого-цифрового преобразователя с промежуточным пре¬

образованием в частоту в соответствии с выражением (7.174)

tt t

fy3(t)dt-.
-T 0 0

Откуда

1У?\р)= Уз(р) —-Уз(р)е pT
>

pT pT

и

У{3\р)_ 1 {\-е~рТ)

Уз(Р) Т р
Wx{p) = (7.177)

Для АЦП с интегральной широтно-импульсной модуляцией в
соответствии с выражением (7.175)

t t
1 I y3(t)dt = to6 + to6)dt-jy3(t-T)dt .
-то о

(0 =*3

Откуда

1 y3(p)e Р(Т /рб) y3{p)e pT

/3\p)
p p
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и

у$\р) 1 e-p(T-to6) _е-Рт
(7.178)Щр)=

рУз(Р)

Если пренебречь погрешностью квантования по уровню, то мо¬
дель преобразования у3Ц) в y4(t) состоит из линейного звена с пере¬
даточной функцией W\(p) и импульсного элемента. Второе звено
становится усилителем с коэффициентом усиления равным 1. Его
можно не изображать на структурной схеме.

Осталось рассмотреть модель части функциональной схемы между
точками 5 и 1 рис. 7.22, т.е. описать преобразование сигнала 1[п 7] на
выходе вычислительного устройства в сигнал x(t) на входе согласую¬
щего устройства. В момент времени t = пТ результат вычислений,
выполненных в ВУ, записывается в память и хранится там до мо¬
мента времени t = п+1. Следовательно, кодовый сигнал 1[пТ\ не из¬
меняется в течении такта Т. ЦАП преобразует код результата вычис¬
лений в напряжение. В соответствии с приведенным описанием,
процессу преобразования соответствует временная диаграмма, при¬
веденная на рис. 7.25. Здесь жирными точками отмечены значения

1[пТ\, линиями — сигнал x(t)
на выходе ЦАП. Разомкнутая

x(t)1[пТ\ импульсная система, приве¬
денная на рис. 7.26, моделиру¬
ет это преобразование. Иде¬
альный импульсный элемент
преобразует в момент времени
t = пТ сигнал 1[пТ\ в сигнал
l[nT\b(t- пТ).

Приведенная непрерывная
часть, передаточная функция
которой

*

О Т 2Т ЪТ АТ 5Т t

Рис. 7.25. Преобразование цифрового

сигнала 1[пТ\ в аналоговый x(t)

1 11\пТ\ ~е-*Т,x(t) Жэ(р) =-иэ р р

имеет импульсную переходную
функцию

Рис. 7.26. Модель преобразования

цифрового сигнала в аналоговый
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11k3{t) = L~
P P

что описывает прямоугольный импульс длительностью Т и ампли¬
тудой равной 1. На вход непрерывной части в момент времени t= пТ
поступает 5-функция с весом 1[пТ\. Следовательно, при t = пТ на
выходе непрерывной части формируется прямоугольный импульс с
амплитудой 1[п 7]. Последовательность таких импульсов является
сигналом x(t), приведенным на рис. 7.26.

Такой способ восстановления непрерывного сигнала из дискре¬
тизированного называется экстраполяцией нулевого порядка.Действи¬
тельно, при известном значении сигнала в момент t= пТэкстрапо¬
лируется его значение до момента {п + 1)Т. При этом считается, что
сигнал не изменяется в промежутке от t = «Гдо t — {п + 1)Т. Вычис¬
лительное устройство совместно с цифро-аналоговым преобразова¬

телем может реализовывать также восстановление экстраполятором
первого порядка. Процедура экстраполяции первого порядка иллюс¬
трируется на рис. 7.27. Здесь жирными точками отмечены значения
функции 1[п7], жирные линии определяют восстановленную функ¬
цию непрерывного аргумента. Тонкие линии показывают способ
построения восстановленного сигнала.

Аналогично модели экстраполяторов нулевого порядка, приве¬
денной на рис. 7.26, представим модель экстраполятора первого по¬
рядка разомкнутой импульсной системой и определим вид переда¬
точной функции непрерывной части. Пусть в момент времени t = О
на вход разомкнутой импульсной системы поступает сигнал /[0] = 1.

x(t)1[пТ\

N

— Т 0 Т 2Т ЗТ 4Т 5Т 6Т 7Т t

Рис. 7.27. Процедура экстраполяции первого порядка
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Тогда на выходе непрерывной
части формируется ее импульс¬
ная переходная функция, вид
которой должен соответствовать
восстановлению функции /[07] =
= 1; 1[пТ\ = 0 при п Ф 0 экстрапо-
лятором первого порядка. Способ
восстановления и результат при¬
ведены на рис. 7.28.

Всоответствиис этим рисунком
импульсная переходная функция
непрерывной части имеет вид:

-Т 2 Т 37 t

Рис. 7.28. Способ восстановления сиг¬
нала /[07] = 1, /[07] =0, п= 1,2, ... экст-

раполятором первого порядка

2-—— +-—— +!(/)-2 •1(/ -7)+!(/-27),*э(0=4 (7.179)
Т Т т

где второе и пятое слагаемые равны 0 при t < 7, третье и шестое слагаемые рав¬
ны 0 при t < 2 7.

Передаточную функцию экстраполятора первого порядка полу¬
чим, применив преобразования Лапласа к правой части (7.179). При
этом

.г \2-рТ\ гт\ 2-рТ\

U )1-е \-е1
(7.180)Щ(Р) =

Р2Т Р

В общем случае можно рассматривать экстраполяцию М-то по¬
рядка, которая на интервале от МТ до (М+1)Тописывает измене¬
ние сигнала многочленом М-й степени. Коэффициенты этого мно¬
гочлена вычисляют по известным значениям I [п — М\, 1[п — М +
+1],...,/ [п\. Сигнал х[п, в] на выходе экстраполятора М-то порядка,
как показано в [7], определяется выражением

м
х[я,е]= ]>У?[0,е]/[«-Л/ + (], (7.181)

1=0

ЛЛТ-у +8

7=0 t~J
i?[0,e]= nгде
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Передаточная функция W3(p) непрерывной части импульсной
системы, являющейся моделью восстановления при использова¬
нии экстраполятора М-го порядка, имеет вид:

м
W3(p) =

-рТе (7.182)

/=0

где

1

Ц(р)= Т1Щ0,е]е-рТяе.
О

(7.183)

Восстановление непрерывного сигнала из дискретного может
быть реализовано на основе различных способов аппроксимации
функции дискретного аргумента 1[п7].

Итак, функционирование типичной системы автоматического
управления, схема которой приведена на рис. 7.22, может быть опи¬
сано на базе известных моделей, составляющих полную систему со¬
отношений для вычислений значений сигналов в фиксированный
момент времени в заданной точке функциональной схемы.

В том случае, если модели объекта управления, согласующего и
измерительного устройства, аналого-цифрового преобразователя
линеаризованы, а вычислительное устройство реализует закон уп¬
равления, описываемый линейным разностным уравнением, модель
цифровой системы управления становится линейной. Структурная
схема модели приведена на рис. 7.29.

Д[«]и[п] 1[пТ\W\q) иэ

У4П е]

*г 1 W\q, е)
У4Н

Рис. 7.29. Структурная схема модели замкнутой импульсной системы

Передаточная функция W(p) в смысле обычного преобразования
Лапласа равна произведению следующих передаточных функций:
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Щр) =
где сомножители являются передаточными функциями соответ¬
ственно непрерывной части модели: экстраполятора, согласующего
устройства, объекта управления, измерительного устройства, первого
звена модели АЦП.

Тогда импульсная переходная характеристика этой части систе¬
мы имеет вид:

1k(t)=rw(p)]. (7.184)

Передаточная функция этой же части системы в смысле D-пре¬
образования имеет вид:

w\q,t)=Y.k (7.185)
п=О

где к[п, е] получаем из (7.184) после перехода к относительному вре¬
мени t/T= п + е. Передаточная функция вычислительного устрой¬
ства обозначена как W*{q).

Изображение сигнала у4[п\ в соответствии со структурной схемой,
приведенной на рис. 7.29, определяется выражением

У4(?) =[и*(я)-УI(я)]]w*(QW*
8 = 0)•

Откуда

w\q)W\q,E = 0) ,*

l+ W*(qW*(q,e =0)
yl(q) = и (q),

где

W\q)W\q,8= 0)
К*(q)= (7.186)

l + W*(qW*(q,B = 0)

передаточная функция замкнутой системы.
Если необходимо получить изображение сигнала у4[п, в], то

y*4(q,E) = W*(q,E)u (q), (7.187)
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где

w\q)W\q,8)

\ + W\q)W\q,z)
W*(q,e) = (7.188)

Изображение сигнала рассогласования A[n] = м[«] — yÿ[n] опре¬
деляется из следующего уравнения, соответствующего структурной
схеме:

A*(q) = и (q)-A*(q)W*(<q)W\q,8 = 0).

Откуда

1А*(<7) = М<?), (7.189)
\ + w\q)W\q,z = Q)

где

1К(я)= (7.190)
l+ W*(qW*(q,B= 0)

передаточная функция замкнутой цифровой системы по ошибке.
Из (7.189) следует, что

\[n]=D-'{wl(q)u{q)]. (7.191)

Пример 7.11
Функциональная схема системы управления приведена на рис. 7.22. Объект

управления задан линейным дифференциальным уравнением первого порядка:

(lv2
Тоб-Г+ У2=кобУ1- (7.192)

dr

Чувствительный элемент практически безынерционен, его коэффициент
усиления равен кчэ.

Аналого-цифровой преобразователь 8-разрядный, быстродействующий.
Временем преобразования «аналог—цифра» можно пренебречь. Погрешнос¬
тью квантования по уровню также можно пренебречь.

Вычислительное устройство реализует закон управления, аналогичный про¬
порционально-интегральному в непрерывных системах. Если Д[л] = и[п\ — у4[л],
где и[п] — входной сигнал, у4[п\ — сигнал на выходе АЦП, то сигнал на выходе
вычислительного устройства имеет вид:
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л-1
у5[п\ = к{А[п\ + к2 I A[ml (7.193)

Л7=0

Результат вычисления у5[л] в начале каждого такта записывается в регистр
памяти, к которому подключен цифро-аналоговый преобразователь. Из этого
условия следует, что в системе используется экстраполяция нулевого порядка.
Передаточная функция экстраполятора нулевого порядка

»Го(/>) =---U-'7',
Р Р

(7.194)

где Т — такт работы вычислительного устройства.

Согласующее устройство — транзисторный усилитель, инерционностью
которого можно пренебречь. Коэффициент усиления согласующего устройства
равен ксу.

Требуется найти Wÿ{q) — передаточную функцию замкнутой импульсной

системы по ошибке.
Вначале определим передаточную функцию в смысле обычного преобразо¬

вания Лапласа непрерывной части системы.
Преобразуя по Лапласу левую и правую части уравнения (7.192), получаем:

Т0бРУ2+У2(Р) = кобУ\(Р)-

Откуда передаточная функция объекта управления

_ У2(р) _ коб
У\(Р) тобР + \Кб(Р)

Передаточная функция непрерывной части системы с учетом заданных ус¬
ловий имеет вид:

коб 1 1 е-»т .Щр)= кчэксу
TrfP+1

Импульсная переходная функция непрерывной части

Р Р

ТобР+Ар р )_
к

k(t) = r'[W(p)]= L-'

где к

к
Оригинал изображения находим, учитывая, что корнями харак-

Р(То6р +1)

теристического уравнения р(Т0§р + 1) = 0 являются р\ = 0; д2 = —1/7я6*
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Тогда

t

к
1(0 -еТфIU = к (7.195)

р(Тфр + \)

к
е рТ отличается от (7.195) только запаз-Оригинал изображения

дыванием на Т.
Р(То6р +1)

-(/-Г)к Тобе~рТ = 1(t-T)-eL~]
р(То6р +1)

Откуда

t-Tt

1(0'-е Т(* 1(t-T)-e*(0 =

где второе слагаемое в квадратных скобках равно 0 при t < Т.

Переходя к относительному времени, получаем:

к[п,е]=[\[п,г]-е-апе-агу[\[п-\,е]-е-а{п-])е-аЕ],
где а = Т/То6.

Следовательно,

w\q,z)= D{k[n,z}}.

Учитывая, что

eq eq
D{\[n,е]} =--—; D{e~an}=

eq-\ eq-e~a

e-q;D{e~a{n-l)}=
eq-e~a

eq -e~q,D{l[n-l,e]}=
eq-l

получаем:

W*(q,г) = k\ l-e~a£
1

Передаточную функцию W*(q) вычислительного устройства получаем, при¬
менив левой и правой части уравнения (7.193):
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/7-1

D{y5m=D{kxm)+D Хм ,
m=О

откуда

A*(tf)y*5(q) = klA*(q) + k2
eq-l

Здесь использована теорема об изображении суммы (см. выраже¬
ние 7.110). Тогда

1
к{+к2

А*(?) eq-\

Передаточная функция замкнутой системы в соответствии с
(7.190) имеет вид:

1Wl(q) =
eq-\

l+k\l- eq -е

Обозначив & = z, переходим к Z-ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ. После неслож¬
ных преобразований получаем:

(z-6)(z-l)
=

z2+[kkl(\-b)-l-b]z+k(k2-kl)(\-b)+ b’
где b = е а.

7.10. Устойчивость линейных импульсных систем

Физически понятие устойчивости линейных импульсных систем
можно ввести так же, как понятие устойчивости непрерывных ли¬
нейных систем. Импульсная линейная система устойчива, если пос¬
ле подачи на ее вход кратковременного сигнала, она с течением вре¬
мени приходит в исходное состояние. Эквивалентно этому опреде¬
лению можно ввести понятие устойчивости линейной импульсной

системы следующим образом: если рассматриваемая система с не¬
нулевыми начальными условиями при отсутствии входного сигнала
с течением времени приходит в состояние покоя, то такая система
устойчива.
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Пусть у* [п, в] — сигнал на входе линейной импульсной систе¬
мы. При заданном входном сигнале хвх[пТ\ изображение сигнала на
выходе системы имеет вид:

вых

JW (?> е) = W*{q,в)х*х (q), (7.196)

где W*(q, б) для разомкнутых систем определяется выражением (7.161); для зам¬
кнутых импульсных систем в зависимости от того, в какой точке системы рас¬
сматривается сигнал увых(р, передаточная функция W*(q, е) определяется либо
как W (q, е) = W*(q, е) в соответствии с (7.188), либо как W (q, б) = W* в
соответствии с (7.190). Обычно W*(q, б) является дробно-рациональной функ¬
цией eq. При этом степень многочлена числителя не превышает степень мно¬
гочлена знаменателя.

Пусть

Н*{д,я)
’

где H\q, б) = а0(б) + ах{e)eq + a2{y)e2q +...+ a{y)elq\
G*(q, 6) = b0(б) + Ъх{г)е9 + b2(E)e2q +...+ ЛДб)я;
l<r.

Введем обозначения e? = z. Тогда

W*(q,£) =

G\Z,8)'
Приравняв к нулю знаменатель этого выражения, получаем ха¬

рактеристическое уравнение системы:

G*(z,e) = 0.

При каждой фиксированной величине в(0 < в < 1) это уравнение
имеет г корней, среди которых могут быть кратные.

Зададимся далее кратковременным входным сигналом:

1 при t = 0;

0 при 0.

W (z,в) =

-*-ВХ (О

В относительном времени

1 при и=0;

0 при пя\.
*вх["Л =
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тогда

J4(9)=Z*Bx[«7’le 9И = 1-
/2=0

При таком входном сигнале изображение сигнала на выходе сис¬
темы в соответствии с (7.196) имеет вид:

Оригинал сигнала на выходе системы

УВЫХ["я = П

В общем случае при наличии кратных корней характеристичес¬

кого уравнения, рассматривая е как параметр, сигнал на выходе си¬
стемы определяется выражением (7.140), в соответствии с которым

s rv~l

v=l ц=0

При отсутствии кратных корней сигнал на выходе системы опре¬
деляется выражением (7.137), в соответствии с которым

(7.197)
В!

0 при п = 0

(zv,8)ÿ_i
v=i (zv,e)

3W«>e]= <

(7.198)

где zv — корни характеристического уравнения системы.

Из выражений (7.197) и (7.198) можно сделать следующие выводы:

Нш уВЬ1Х[п,в]= 0, если |zv|< 1, v = 1, 2, ...,г , т.е. система устойчи-
п—>°°

ва, когда модули всех корней ее характеристического уравнения
меньше 1. Так как корни уравнения в общем случае комплексные,
то можно изменить формулировку: импульсная линейная система ус¬
тойчива, когда корни ее характеристического уравнения находятся
внутри круга срадиусом, равном единице, расположенного в плоскости z
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(см. рис. 7.30); если хотя бы один корень рас¬
положен на границе круга, т.е. его модуль ра¬
вен 1, то система находится на границе устой¬
чивости. В этом случае говорят, что система
нейтральна. Если хотя бы один корень харак¬
теристического уравнения расположен вне
единичного круга, то система неустойчива.

Условия устойчивости линейной импульс¬
ной системы можно получить относительно
комплексных переменных qv, v = 1,2, ..., s.
Выше было введено обозначение z = eq. Сле¬
довательно,

Im z

z

1
Re z

-1 1

Рис. 7.30. Круг единич¬
ного радиуса на комп¬

лексной плоскости z

zv =eV

Пусть gv = qv +jbv. Тогда zv =eave. Откуда |zv|<l, если av < 0.

Таким образом, линейная импульсная система устойчива, когда qv,
v = 1, 2, ..., s лежат в левой полуплоскости (рис. 7.31). Функция eqv
является периодической с периодом равным 2тг.

Действительно,

ё9v = ejbv = e°v [cos bv + jsin bv ] =

= e [cos(bv + 2nk) + jsin(bv + 2nk)]= e +27lkj.

Поэтому значения этой функции можно
рассматривать при изменении ее аргумента
в полосе ±jn. На рис. 7.31 показано положе¬
ние двух комплексно-сопряженных корней
характеристического уравнения ql и q2 и од¬
ного действительного корня q3, лежащих в
левой полуплоскости. Соответствующая ли¬
нейная импульсная система третьего поряд¬
ка с такими корнями устойчива.

Если хотя бы один из корней qv лежит в
правой полуплоскости, то система неустойчи¬

ва. В том случае, когда qv лежит на мнимой
оси, система нейтральна.

Im q
+7Г

9\
0Ь Re q

Ъ

— 7Г

Рис. 7.31. Расположе¬
ние корней характерис¬
тического уравнения ус¬
тойчивой импульсной
системы на комплексной

плоскости q
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Определение корней характеристического уравнения степени 3
или 4 достаточно трудоемкая операция. Если степень многочлена
более 4, его корни не выражаются через коэффициенты уравнения.
Поэтому необходимо решать задачу анализа устойчивости систем,
не находя корней характеристического уравнения. Для ответа на воп¬
рос об устойчивости системы без вычисления корней характеристи¬
ческого уравнения служат критерии устойчивости. Рассмотрению
этих критериев посвящен отдельный раздел теории автоматическо¬
го управления.



Глава 8. МОДЕЛИ НЕЛИНЕЙНЫХ НЕПРЕРЫВНЫХ

СИСТЕМ

8Л. Основные определения. Статическая и динамическая
нелинейности

Систему называют нелинейной, если ее модель не описывается
линейным оператором. Модель нелинейной системы управления
обычно представляют системой нелинейных дифференциальных и
алгебраических уравнений. Система остается нелинейной даже тог¬
да, когда все, кроме одного дифференциального или алгебраическо¬

го уравнения, линейны. В этом случае говорят о линейной и нели¬
нейной частях нелинейной системы. Отдельные элементы систем
управления будем в дальнейшем называть звеньями. Если работа

звена описывается нелинейным алгебраическим уравнением, будем
говорить о статической нелинейности и, соответственно, о стати¬
ческом нелинейном звене. Если работа звена описывается нелиней¬
ным дифференциальным уравнением, то говорят одинамической не¬
линейности и, соответственно, о нелинейном динамическом звене.
Модель системы управления получают путем математического опи¬
сания ее звеньев на основе законов физики и согласования входов и
выходов этих звеньев в соответствии со структурной схемой систе¬
мы. Если модель системы составляют т линейных дифференциаль¬

ных уравнений и одно нелинейное алгебраическое уравнение, то го¬
ворят о системе с одной статической нелинейностью. В общем случае
число статических нелинейностей может быть равно 2 и более. Ал¬
гебраическое уравнение у = Дх), связывающее сигнал у на выходе

звена с сигналом х на его входе в установившемся режиме, называ¬
ется статической характеристикой звена. Для статических нелиней¬
ностей нелинейная функция у =J[x) определяет преобразование сигна¬
ла звеном. По виду этой функции статические нелинейные характе¬
ристики подразделяют на характеристики пропорционального дей¬
ствия, кусочно-линейные, однозначные разрывные и неоднозначные.
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Звенья с характеристиками
пропорционального действия. У этих
звеньев функция J{x) однозначна,
непрерывна и дифференцируема
во всем диапазоне изменения
входного сигнала (рис. 8.1). Такой
вид имеют, например, электромаг¬
нитные и электромеханические
характеристики тяговых электро¬
двигателей.

Звенья с кусочно-линейной ста¬
тической характеристикой. Ста¬
тическая характеристика звена яв-

у

X

Рис. 8.1. График нелинейной стати¬
ческой характеристики пропорцио¬

нального действия

dy
ляется кусочно-линейной, если в некоторых точках производная —

dx
имеет разрыв (рис. 8.2).

ба
У У

X X*а

в гУ У

Уь Ув

~ХВ ~Хв -*а
Ха хв X

~Ув
~Ув

Рис. 8.2. Ломаные статические характеристики

Статическое звено, имеющее характеристику, приведенную на
рис. 8.2, б, называют звеном с зоной нечувствительности:
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при |х|<ха;
к(х-ха ) при х > ха;

к(х + ха ) при х < -ха .

О

У =

Звено типа ограничение имеет статическую характеристику (см.
рис. 8.2, в):

при |х|<хв;
yBsignx при |х|>л:в.

Звено типа ограничение с зоной нечувствительности имеет харак¬
теристику (см. рис. 8.2, г):

кх
У =

при |х|<ха;

к(х-ха) при хв >х>ха;

к(х + ха ) при -хв < х < -ха;

yBsignx: при |х|>хв.

О

Звенья с однозначными разрывными характеристиками. Неко¬
торые характеристики таких нелинейных звеньев приведены на
рис. 8.3.

Статическую характеристику идеального двухпозиционного реле без
гистерезиса (см. рис. 8.3, а) можно описать выражением вида:

yBsignx при |л:| > 0;

~Ув <У<Ув ПРИ х = 0.
У =

ба У У,

Ув Ув

-5
Т т6

~Ув ~Ув

Рис. 8.3. Статические характеристики идеальных реле без гистерезиса:
а — двухпозиционного; б — трехпозиционного
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Выражение для статической характеристики звена типа идеаль¬
ное трехпозиционное реле без гистерезиса (см. рис. 8.3, б) имеет сле¬
дующий вид:

yBsignx при х>8;

при —8<х<5.

Звенья с неоднозначными разрывными характеристиками. Нео¬
днозначность функции у = Дх) определяет свой класс статичес¬
ких нелинейностей. К звеньям с двухзначными характеристика¬
ми относится звено типа двухпозиционное реле с гистерезисом. Его
характеристика приведена на рис. 8.4, а.

Величина у при —ха < х < ха имеет два значения +ув или —ув в
зависимости от предыдущих значений х. Условия перехода от значе¬
ния —ув к +ув записывается следующим образом: х = ха; у = —ув;
dy— > 0. Условия перехода от значения +ув к —ув имеет вид: х = —ха;

у = ув; < 0. Таким образом,

У =
0

dy
ув при х > ха и — > 0;

dx
У =1 dy

-ув при х < —ха и — < 0.
dx

Звено типа трехпозиционное реле с гистерезисом имеет статичес¬
кую характеристику, приведенную на рис. 8.4, б. Условия перехода от

бa
У У

Ув
Ув

I ' 1
Аl! ItI t

-*в -*а
*а *в X

I ' ' Аll It
X

-Ув
~Уг

Рис. 8.4. Статическая характеристика поляризованных реле с гистерезисом:
a — двухпозиционного; б — трехпозиционного
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у = 0 к у = ув для этого звена записывают следующим образом: х = хв,
dy

у = 0; — >0. Аналогично записывают условия остальных переходов:
dx

dy
ув прих>хви — >0;

ах
dy

0 при -хъ <х<ха и — <0;
dx

У =
dy

-ув прих<-хви — <0;
dx

dy
0 при х < ха и — > 0.

dx

К таким звеньям относится и звено типа люфт. Эта нелинейность
наиболее часто встречается в механических системах. Она связана с
наличием зазоров в зубчатых передачах. Статическая характеристи¬
ка этого звена приведена на рис. 8.5.

Аналитически эта характеристика записывается так:

dy
к{х-ха ) при — > 0;

dx
У = \ dy

к(х + ха ) при — < 0;
dx

dy
у = -Assign — + кх при

dx У

к(х-ха)<у<к(х + ха), когда

/dy -V= 0. /
dx / ха X

Характеристики некоторых других
звеньев такого типа, описывающие
процессы в различных устройствах

систем управления, приведены на
рис. 8.6:люфт и ограничение (а); люфт,

У
Рис. 8.5. Статическая характе¬

ристика звена типа люфт
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ба
У У

Ув
Ув
/у

~Л ~*а/
*а хвX X

*3*-у,
-Ув

в

Ув

Ши

-Ув

Рис. 8.6. Статические характеристики звеньев:
а — типа люфт и ограничение; б — люфт, нечувствительность и ограничение;

в — упор

нечувствительность и ограничение (б); упор (в). Так характеристи¬
ки, соответствующие звену типа упор, описывают процессы в си¬
стемах с пневматическими и гидравлическими усилителями, а так¬
же с электрическими серводвигателями, имеющими концевые
выключатели.

Динамические нелинейности описываются нелинейными диф¬
ференциальными уравнениями. В качестве примера приведем
дифференциальное уравнение движения транспортного средства:

л ds ds ds
т .1 I ,Д+ У (8.1)торVI

dt Уdt2 ydt dt

где т — масса;

FT — сила тяги;

— торможения;орм

Fc — сила сопротивления движению;
s — пройденный путь;
t — время движения.
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Так как FT, Fc, F м — нелинейные функции скорости движения
ds/dt, то уравнение (8.1) нелинейное.

Допустим, что требуется вести транспортное средство с заданной
скоростью. Регулятор скорости описывается линейной системой
уравнений. Однако в модель системы входят уравнения объекта уп¬
равления и регулятора. Учитывая, что уравнение объекта управле¬
ния является нелинейным, то и модель всей системы управления
также будет нелинейной.

Как уже указывалось ранее, модель системы, описываемая диф¬
ференциальным уравнением «вход—выход» п-го порядка может быть
представлена моделью, состоящей из п дифференциальных уравне¬
ний первого порядка:

dx-
-r =fi(x\,x2, ...,Хп,Щ,и2, ...,Ur,t) (8.2)
dt

i =1,2, r<n;

yj=(pj(xl,x2, ...,xn,u{,u2, ...,ur,t),

у =1,2, ...,m<n,

(8.3)

где Xj — фазовые координаты;

Wj, u2, ..., ur— управляющие воздействия;

yj — выходные координаты

Функцииfjфу в общем случае нелинейные. В векторной форме

системы.

dx
— = F(x,u,t), Y = \jf(x,u,t).
dt

Если система автономна, то правые части уравнений не зависят
от времени t и

dx
(8.4)— = F(x,и).

dt

Такую форму записи уравнений называют нормальной формой
Коши.

Как уже указывалось при рассмотрении линейных систем, мно¬
жество фазовых координат определяет фазовое пространство. Си¬
нонимом этого термина является термин «пространство состояний»,
используемый обычно при описании линейных моделей.
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Рассматривая х{, х2, ...» хп как оси координат, состояние системы
в каждый момент времени t характеризуется положением так назы¬
ваемой — изображающей точки, траектория движения которой на¬
зывается фазовой траекторией. В соответствии с выражением (8.2),
правые части этих уравнений определяют проекции скорости дви¬
жения изображающей точки на оси координат.

При наличии двух фазовых координат (система дифференциаль¬

ных уравнений второго порядка) получаем частный случай фазово¬
го пространства — фазовую плоскость. В п. 8.4 на примере системы
второго порядка будет показана эффективность использования это¬
го понятия.

8.2. Способы исследования нелинейных систем

В отличие от линейных систем, для нелинейных, описываемых
нелинейным дифференциальным уравнением,

„ du d2u dmu dy d2y
F и,—,—-, ...,——, y, —,— ..

dt dt2 dt dt dt2
dny— =0, m<n, (8.5)•?

dtn

где у — сигнал на выходе системы, которой невозможно найти в общем виде
аналитического решения.

Для таких систем решение y(t) = усв + yB(t) уравнения (8.5) может
быть найдено приближенными способами: либо на основе числен¬
ного интегрирования этого нелинейного дифференциального урав¬
нения, либо с применением методов линеаризации. Различным ас¬
пектам теории и практики применения численных методов посвя¬
щена обширная специальная литература.

Для численного интегрирования используют различные спосо¬
бы. Наиболее широкое распространение получил способ Рунге—
Кутты. Для его применения необходимо вначале выполнить приве¬
дение уравнения (8.5) к нормальной форме Коши. Однако возмож¬
ность выполнения такой процедуры должна быть предварительно
доказана для каждого конкретного вида нелинейной зависимости
(8.5), что довольно сложно выполнить.

В связи с этим для решения нелинейныхдифференциальных урав¬
нений лучше всего использовать способы интегрирования, не тре¬
бующие приведения системы уравнений к форме Коши. К таким
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схемам относятся, например, явная схема «предиктор» и неявные
схемы — (3-схема Ньюмарка, схема Парка и т.п. [43]. При этом сле¬
дует иметь в виду, что из-за вычислительных погрешностей схемы
численного интегрирования могут дать неустойчивые решения не
только для нелинейных, но даже и для устойчивых линейных сис¬
тем. Опыт применения различных схем численного интегрирования
нелинейных уравнений динамики локомотивов показал, что лучшие
результаты могут быть получены на основе выполнения численного
интегрирования по вышеуказанным схемам Парка, (3-схеме Ньюмар¬
ка и схеме «предиктор».

В последнее время вместо прямого численного интегрирования
дифференциальных уравнений электромеханических систем широ¬
кое распространение получило использование пакетов прикладных
программ, например, таких как Oread, Matlab и т. п. Применение этих
пакетов не требует составления систем дифференциальных уравне¬
ний. Достаточно изобразить исследуемую систему графическими
средствами пакета, а составление и решение уравнений пакет будет
выполнять самостоятельно. Примеры использования пакета Matlab
для исследования систем автоматического управления э.п.с. будут
приведены в следующих разделах учебника.

В ряде случаев, существенных при решении практических задач,
процессы в нелинейных системах можно с достаточной степенью
точности анализировать на линейных моделях. Пусть сигнал м(/) на
входе системы имеет вид:

u(t) = u0+Au(t),

где UQ — неизменная во времени составляющая;
Аu(f) — отклонение от неизменной составляющей входного сигнала.

Математическая модель системы задана нелинейным дифферен¬
циальным уравнением (8.5). Будем считать, что функция F— непре¬

рывна и имеет все производные й,и, ..., и у,у, ...,у . При посто¬
янном входном сигнале система находится в установившемся ре¬
жиме у = у0, т.е.

(8.6)...,0, у0, 0, 0, ...,0) = 0.

Перечисленные условия позволяют линеаризовать нелинейное
уравнение (8.5) и анализировать уже линейную модель системы при
малых отклонениях Au(t).
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Разложим функцию F(u, й, й, ..., ият\у, у, у, уя) в окрестнос¬

ти точки и = и0, й = 0,и = 0, =0, у = у0, у = 0, у = 0, ...,уя =0 в
ряд Тейлора по переменным

и = и0 + Дм; й = Ай, и = Ай, ..., w(w) = Ди(/я);

у = у0,у = Ау,у = Ау,...,у(я=Ау(/1):

F(«0 + А«, Ай, Ай, A«(w),y0 + Ау, Ау, Ау, Ду(я)) =
dF dF dF Ап<">= F(u0,0,0, ...,0, y0, 0, 0, ...,0) + ДЙ +Au + +
du)0 duj0 duj0

dF dF dF dF AyM +Aÿ+UJoA"+-+
+ члены высшего порядка малости.

Ду ++
d/n)dy Jo dy Jo SO

dF dF dF dF
Здесь через обозначены значе-rfU’UHo’UvU0'*so

ния соответствующих частных производных при

«=«0; у=уо'>«(,)=0; у(,)=о.

Первый член этого выражения в соответствии с (8.6) равен 0. Пре¬
небрегая членами высшего порядка малости, получим:

dF 1 Ау(,) = 0. (8.7)
dy®

'О

Уравнение (8.7) называют линеаризованным уравнением нели¬
нейной системы (8.5). Это уравнение является приближенным, так
как в процессе его вывода были отброшены члены высшего порядка
малости. Кроме того, вотличие от нелинейного уравнения (8.5), урав¬
нение (8.7) устанавливает связь между соответствующими малыми
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отклонениями воздействия Дм и реакции системы Ду от исходного

состояния м = м0, м = 0, м = 0, ...,и(т) = 0; У=Уо> у = 0, у = 0, ...,у>(я) =0.
Таким образом, линеаризация исходного нелинейного уравнения

привела к линейному уравнению в отклонениях (другой термин —
уравнение в вариациях).

Пример 8.1
Дифференциальное уравнение движения транспортного средства имеет вид:

av
(8.8)m-= FT-Fc,

dr

где FT — сила тяги;

Fc = b0 + 6jV + byP — сила сопротивления движению, bQ > 0; Z>j > 0; b2 > 0;
m — масса транспортного средства;
v — скорость его движения.

Так как Fc — нелинейная функция скорости, то уравнение (8.8) — нелиней-

, dv-n)
ное. При силе тяги, равной /ф > Ь$, имеет место установившийся режим I ~ и I :

0 = Fy0-Fc.

Следовательно, скорость установившегося режима может быть определена
из уравнения (8.9):

(8.9)

byv2 +b\V + bQ -FTQ =0.

Откуда

_ ~h — л/яj2 ~4(ÿo ~ FT0)b2
VU 2b

Так как FT > 0 и v0 > 0, то

-b+ yjb2 +4(FT -a)c
(8.10)v0 2c

FT=b0+blv0 +*2V02.
Линеаризуем уравнение (8.8) в окрестности точки /ф, v0 установившегося

режима. Перенесем все члены уравнения (8.8) в левую часть:

FT + Z>Q + b\V + bjV2 = 0.m--
dr
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Разлагаем левую часть этого уравнения в ряд Тейлора в окрестности точки

Тт0 и v0 и отбрасываем члены высшего порядка малости:

-AFT +(/>[ +2Z>2VQ)AV + =

Откуда линеаризованное уравнение имеет вид:

dAv

df
+(ÿI+2VO)AV = AÿT-

При линеаризации нелинейных систем следует обращать внима¬
ние на требования, предъявляемые к функции F(u, у), входящей в
уравнение (8.5). Необходимым условием для получения линеаризо¬
ванного уравнения (8.7) является дифференцируемость этой функ¬
ции. Линеаризация в указанном смысле недопустима в частности
при однозначных и неоднозначных разрывных характеристиках.
Эти характеристики называют существенно нелинейными. Для ли¬
неаризации существенных нелинейностей используют вибрацион¬
ную, статистическую и гармоническую линеаризации. Кроме того,
возможно применение и других методов, обеспечивающих учет осо¬
бенностей работы соответствующего элемента.

Принципиально иной способ используется при линеаризации
статической нелинейности идеального квантователя по уровню
(см. рис. 3.4, г). Зависимость zB
может быть записана аналитически:

(8.11)т

приведенная на рис. 3.4, г,от zВХ’ых

+ q,
q 2 J2ВЫХ E (8.12)

+ AsignzBX
q 2

где E — целая часть числа, заключенная в квадратных скобках;

1 при zBX > 0;

-1 при zBX<0;
0 при zBX = 0;

signzBX=<

q — шаг квантования по уровню.
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Эквивалентом выражения (8.12) является

2вых — 2вх
где A = kq- zBbIX при kq-0,5# < z0X < kq +0,5#.

Выражению (8.13) соответствует структурная схема, приведенная
на рис. 8.7. Погрешность квантования находится в диапазоне ±q/2.
В существующих системах управления число разрядов п аналого-
цифрового преобразователя, осуществляющего квантование, как
правило, не менее 8. Тогда «цена» младшего разряда, определяюще¬
го q, при 0 < zBX < А равна:

(8.13)

А
я=—— •

2п -1

Приведенная максимальная погрешность при п = 8 составляет:

5= — 1max = 0,00392,
А 2"-\

что менее 0,4 %. Во многих случаях этой погрешностью можно пре¬
небречь. Тогда

2ВЫХ ZBX’

(g>ÿZBX

Я/2-q А

-2q-

У
-q/2 2q

Рис. 8.7. Модель идеального квантователя
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8.3. Определение статических характеристик группы
нелинейных звеньев

Определение статических характеристик САУс нелинейными зве¬
ньями значительно усложняется. Поскольку нелинейными являют¬
ся статические характеристики тяговых двигателей э.п.с. [скорост¬
ная v(7), электротяговая F(f), тяговая Ду) и намагничивания Ф(/)],
то необходимо рассмотреть процедуру построения эквивалентных ха¬
рактеристик для различных схем соединения нелинейных звеньев.

Для параллельно соединенных звеньев (рис. 8.8) эквивалентная
статическая характеристика [кривая у3(х)] представляет собой сум¬
му ординат их характеристик [кривые yt(x) и у2(*)1*

При последовательном соединении звена I (рис. 8.9, а), стати¬
ческая характеристика которого хДх) располагается в квадранте I,
и звена II с характеристикой y(jcj), расположенной в квадранте II,
характеристика эквивалентного звена у(х) = хя(х) _y(xj) находится в
квадранте IV.

Задаваясь каким-то значением х, например, для точки 1, из этой
точки восстанавливают перпендикуляры в квадранты I и IV. Из точ¬
ки 2 пересечения перпендикуляра с характеристикой Xj(х) прово¬
дят линию, параллельную оси абсцисс, до пересечения с характе¬
ристикой y(xj) — точка 3. Абсцисса, соответствующая точке 3, рав¬
на искомому значению выходной координаты. Это значение
переносят в квадрант IV с помощью биссектрисы ОА и перпенди¬
куляров к осям х и Xj так, как показано стрелками. Полученная точ¬
ка 5 принадлежит статической характеристике эквивалентного зве¬
на НЭ. Также можно найти другие точки характеристики у(х).

Для построения эквивалентной статической характеристики трех
последовательных звеньев (см. рис. 8.9, в) в квадрантах I—III рас-

6а
У Уз(х)\ Ti

I Уз' \Уз=У\+Уг
J>i(*)

х
У2

7Пя У1:

У
X

Рис. 8.8. Схемы (а) и характеристики (б) параллельно соединенных нелиней¬
ных звеньев
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Рис. 8.9. Схемы (а, в, д) и характеристики (б, г, с), поясняющие процесс замеще¬
ния эквивалентным звеном нелинейных звеньев, включенных последователь¬
но. (Наклонные линии ОА в третьих квадрантах являются биссектрисами соот¬

ветствующих углов.)

полагают характеристики исходных звеньев, а в квадранте IV рас¬
смотренным способом получают эквивалентную статическую ха¬
рактеристику. Если в системе более трех звеньев, то их объединяют

в группы по два-три звена, а затем по характеристикам групп опре¬
деляют характеристику системы.

Таким же способом определяют характеристику одного из зве¬
ньев так, чтобы характеристика эквивалентного звена была линей¬
ной (ЛЭ — линейный элемент). Допустим, система состоит из двух
звеньев (см. рис. 8.9, в) и характеристика звена I задана в квадран¬
те I. В квадранте IV строят желаемую характеристику эквивален¬
тного звена. Искомую характеристику звена II можно построить
в квадранте II, используя биссектрису ОА. Такую же задачу мож¬
но решить и при большом числе звеньев.

Если звенья системы включены по схеме обратной связи (рис. 8.10, а)

у = у(х{) = у[х-хос(у)],
то определение статической характеристики эквивалентного звена
зависит от того, положительна или отрицательна эта связь. Для от¬
рицательной обратной связи, определяя характеристику эквивален¬
тного звена, характеристику звена в цепи прямой связи строят в
квадранте I (см. рис. 8.10, б) — кривая у(х), а характеристику звена в

(8.14)
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Рис. 8.10. Схема (а) и характеристики (б, в), поясняющие процесс замещения
эквивалентным элементом двух нелинейных элементов, включенных по схеме

обратной связи

цепи обратной связи строят в квадранте II — кривая дс0С(у). Задава¬
ясь каким-либо значением у (точка 1), определяют, каким должно
быть значение входной координаты х при отрицательной обратной
связи. В системе без обратной связи х определяют по кривой у(х);
х равен отрезку Оа\ при обратной связи Оа = х- хос. Поэтому надо
определить хос. Для заданного значения у искомое х= Оа + хос. На
рис. 8.10, б показано, что точке 1 кривой у(х) соответствует точка 2
на кривой *ос(у) и хос = Ob. Тогда искомое значение х= Ос = Оа +
+ ОЬ и соответствует точке 3 статической характеристики [см. фор¬
мулу (8.14)] эквивалентного звена. Такие же построения для дру¬
гих значений у определят другие точки характеристики эквивален¬
тного звена.

Для положительной обратной связи у = y(xj) = у [х + *ос(у)] и х =
= Оа — хос. Характеристики звеньев, включенных в цепи прямой и
обратной связи, строят в квадранте I — кривые у(х) и хос(у) (см.
рис. 8.10, в). Искомая абсцисса Ос результирующей характеристики
равна разности абсцисс точек 1 и 2: Ос = Оа — ОЬ.

При отрицательной обратной связи результирующая статическая
характеристика более пологая, чем исходные, а при положительной —
более крутая.
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Рассмотренные способы преобразования нелинейных характери¬
стик звеньев используют на практике для построения статической
характеристики САУ и определения необходимых значений коэф¬

фициентов усиления отдельных звеньев, входящих в состав САУ.

8.4. Переходные процессы в нелинейной системе
с существенно нелинейными звеньями

Переходные процессы в нелинейной системе автоматического
управления с существенно нелинейным звеном рассмотрим на при¬
мере системы второго порядка с релейным элементом.

Заданная система предназначена для регулирования температу¬
ры в камере (рис. 8.11, а). Учитывая инерционность процесса нагре¬
ва и охлаждения, уравнение объекта регулирования записываем в
виде:

dQ

?i— + 0 =
dt

где Tj — постоянная времени камеры,
0 — регулируемая температура,
ср — положение регулирующего органа — заслонки, открываемой и закры¬

ваемой серводвигателем СД (вспомогательным двигателем). Измерительное ус¬
тройство (ИУ) преобразует температуру в камере в электрический сигнал

щ =

Сигнал Н| вычитается в органе сравнения (ОС) из сигнала иу =
где 03 — заданная температура. Напряжение х = и2 — ия = &2(03 — 0)

подается на катушку поляризованного реле П Р, имеющего зону не¬
чувствительности ±ха. Характеристика этого существенно нелиней¬
ного звена приведена на рис. 8.4. Когда \х \ >ха, реле срабатывает и
своими контактами в зависимости от знака рассогласования х пода¬
ет напряжение ув той или иной полярности на двигатель. Двигатель
через редуктор Р изменяет положение ф регулирующего органа —
заслонки. Так как постоянная времени камеры много больше посто¬
янных времени остальных элементов системы, ее модель представ¬
ляется структурной схемой, которая приведена на рис. 8.11, б.
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Рис. 8.11. Функциональная (а) и структурная (б) схемы системы регулирования
температуры

В соответствии с приведенной схемой процессы в системе опи¬
сываются следующими уравнениями:

dtp dx
при х > xa , — > 0;-Г = Ув

dt
dx

при x > -xa, -— < 0;
dt (8.15)

d(p dx
при x < xa , — > 0;= ~Ув

dt

dx
при x<-xa, — <0;

dt

x = k2(Qз -0).
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t

Ф= \ydt\
О

(8.16)

dQ
(8.17)7} — + 0 = /cjcp.

dt

Продифференцировав последнее уравнение и подставив в него
d(p
— = У, получим:
dt

d2Q dQ ,
+ — = kly.п (8.18)

dt2 dt

Правая часть этого уравнения равна +кхув или —кхув в зависимо¬
сти от того, в каком состоянии находится реле, переключение кото¬
рого происходит в соответствии с условиями (8.15). Решение этого
линейного уравнения имеет вид:

t

— = Схе т' ±кхув; (8.19)
dt

t

Q--TxCxe Т] ±kxyBt + C2,

где Cj, С2 произвольные постоянные, знаки второго слагаемого соответствуют
знакам правой части.

Задаваясь начальными условиями при t = 0, определим положе¬
ние реле, ср и, следовательно, знак правой части уравнения (8.18). Из
уравнений (8.19), (8.20) при / = 0 и заданных начальных условиях
определяются Сх, С2, затем 0(/).

Из уравнений 0(/) = — или 0(/) =-— (в зависимости от началь-
к2

(8.20)

к2
ных условий) находят момент времени tx , при котором происходит
переключение реле, что соответствует смене знака правой части урав¬

нения (8.18). Величины 0(/j) = ±— и —
к2 dt

являются начальными
t=t\
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условиями для определения произвольных постоянных, соответству¬
ющих движению системы на следующем участке и так далее. Такой
способ решения называется «припасовыванием». Начальные условия
и вид уравнения (в данном примере знак правой части) на п-м учас¬
тке определяются значением переменных в конце п—1 участка.

Рассмотрим переходный процесс при 03 = 0. Тогда х = —к2&. Обо-

*азначим — = Ь. Зададимся начальными условиями:
кг

rffl
= -А0, причем > 0.0(0) = -b; —

dt t=о

dx
Тогда x{0i) = k2b = xB\ —

dt(=0

выходе релейного элемента равен +уъ. Решение дифференциально¬
го уравнения (8.17) определено выражениями (8.19), (8.20), в кото¬
рых перед коэффициентом кх знак «плюс». Произвольные постоян¬
ные Cj и С2 вычислим из начальных условий:

= к0к2 > 0. Следовательно, сигнал на

-Ь--Т\С\ +С7;

t
dQ

С\е Т' + кхув --А0.
dt /=о

t=о

Откуда

С\ +к\Ув ~~я0’ с\ --(>«о+я1Тв);

С2 = 7}С, -b = -Tx (Xq + кхув )-Ь.

d0
Зависимости 0(/) и — на первом участке от 0 до /, определяются

после подстановки коэффициентов Сх и С2 в (8.19) и (8.20):
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t \
Г| -b+k{yBt;0 = -7](ÿo+ÿB) 1 (8.21)—e

t

— =-(кй+к\Ув)е T'

График 0(0 приведен на рис. 8.12. При t= tx

(8.22)

JL
dQ\

~~(ÿo +к\Ув)е Тх+к\Ув~я\-Щ)=Ь\
dt t=t{

e

Ti Ь T3

В
+b

;

h h U t
\

-b
DA

Рис. 8.12. График переходного процесса в системе регулирования температуры

Время из уравнения 0(/j) = b:

Гь = ~т\(я0+к\Ув) l~e Tl -b+ kxybtx. (8.23)

Это трансцендентное уравнение можно решить графически. Пусть
результат решения получен и величина tx известна. Для определе¬
ния 0(0 на следующем участке используем выражения (8.19) и (8.20)
решения дифференциального уравнения (8.18) с учетом того, что
перед коэффициентом кх знак «минус». Произвольные постоянные
С) и С2 найдем, зная начальные условия:
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_д
dQ

= -(l0+klyB)e Г| +klyB=Xl.0(0) = b\ —dt t=0

Длительность следующего участка r2 — /j = т2 определим анало¬
гично из условия 0(т2) = —b. Все остальные участки кривой переход¬
ного процесса будут определены такими же решениями, но только с
другими значениями С1? С2, А.,-.

Выясним теперь, возможно ли решение, при котором 0(/) — пе¬
риодическая функция. Физически это означает, что в нелинейной
системе устанавливается колебательный режим. Такой режим назы¬
вают режимом автоколебаний.

Один цикл переходного процесса состоит из двух участков АВ и
BD (рис. 8.12). Для существования колебаний необходимо, чтобы на

п-ы цикле значения 0 и — в точке А равнялись бы 0 и — в точке D.
dt

Так как нелинейная статическая характеристика релейного звена
симметрична, достаточно рассмотреть только один участок АВ и по¬
требовать, чтобы

dt

dQdQ
; QA=-b;QB=b.

dt dt A

Обозначив период искомых колебаний через Т, а длительность
участка АВ, следовательно, через Т/2, из (8.19) найдем:

в

т
dQ 27j

= С\е + k{yB; (8.24)
dt в

dQ
(8.25)= Cj +k\yB.

dt л
Откуда

т
271Qe + klyB=-Cl-klyB
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т

Сх \ +е 27* + 2кхуъ = 0. (8.26)и

Т
Положив в (8.20) для точки А: 0 = —Ь при / = 0; 0 = b при t =—,

получаем еще два уравнения:

(8.27)~Ь--Т]С] +С2;

т

b = -TlC\e2Т>

Решим систему уравнений (8.26—8.28) относительно неизвестных

Тх, Сх и С2.
Из (8.27) и (8.28) следует:

(8.28)

т
т27]2Ь = ТХСХ 1-е + к\ Ув (8.29)

Определив Сх из (8.26) и подставив в (8.29), получим уравнение
относительно Т.

т
-ЗУ» т27]26 = 7] + к\Увя- (8.30)

27]1+е

Так как

T_f _г
т е4Г> -в 4Г>

т \

27]1-е Т
£ = thт \ 47]’т т т

1+ е 2я е4* е4Г> 47]+ е
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то уравнение (8.30) имеет вид

th
Т _ Т Ь

1
47]

~~

47] кхуъ7]
(8.31)

Полученное трансцендентное уравнение для Т решается графи¬

та
чески (рис. 8.13) при пересечении кривой у\ = th-ÿ- и прямой

Т Ь

Щ *,увГ,
'

47",

У2 =

Если найдено положи¬
тельное вещественное чис¬
ло Т*, то это свидетельст¬
вует о наличии периодиче¬
ского решения в данной
динамической системе.
Вместе с тем рассмотрен¬
ное решение является толь¬
ко необходимым условием
автоколебаний. Для того
чтобы получить достаточ¬
ное условие, иначе — дока¬

зать устойчивость автоколебаний, требуется дополнительное рас¬
смотрение, которое будет дано в следующем п. 8.5.

У\ Уг У2

\
У1

Г*/47] 7747]
Ь

*i.yJ\

Рис. 8.13. Графический способ решения
нелинейного уравнения

8.5. Фазовая плоскость. Многолистная фазовая плоскость

Фазовое пространство при описании модели системы управле¬
ния дифференциальным уравнением второго порядка является фа¬
зовой плоскостью.

Задачи, рассматриваемые в теории линейных систем второго по¬
рядка, сводятся обычно к изучению процессов, описываемых диф¬
ференциальным уравнением

d2y dy
a2 — +ax—+aQy = u{t).

dr dt

В теории нелинейных систем будем рассматривать модель, опи¬
сываемую уравнением

(8.32)
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d2y dy
(8.33)«2 —Г + a\ ~T + v(y) = u(t).

dr dt

При u(t) = const = м0 б установившемся режиме = 0,— = 0 и
dt2 dt

\j/(y) = UQ. Уравнение (8.33) является моделью системы со статичес¬
кой нелинейностью \|/(у). Перейдем от уравнения «вход—выход» к
дифференциальным уравнениям первого порядка, т.е. к модели си-

dx
стемы в нормальной форме Коши. Обозначим у = хя, —-= х2. Тогда

из (8.33) получаем:

dxj
=*2;

dt
(8.34)

= —[-ЩХ2 - \|/(Х!) +1/(0]•
dt а2

При u(t) = const правая часть второго уравнения не зависит от вре¬
мени и система (8.34) будет автономной. В общем виде автономная
система может быть записана:

dx| _
х2’dt

(8.35)
dx2 _

f(xьх2).
dt

Динамику системы будем изучать при ее движении от заданных
начальных условий, когда и = const. Такой подход позволяет анали¬
зировать переходные процессы в автономной системе.

Из (8.35) можно получить уравнение фазовой траектории на фа¬
зовой плоскости, поделив второе уравнение на первое:

dx2 _/(xh х2 )
(8.36)

dxi х2
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Решая (8.36), определим х2 = срСя) — фазовую траекторию. В бо¬
лее общем виде уравнения (8.35) можно записать в виде:

dx2 _
и

dx2_P(xlf*2)

dx\ Q{xhx2Y
(8.37)

Р(хьх2)
dt

где Q и Р — в общем случае нелинейные функции координаты Х| и скорости ее
изменения х2.

dx1

В состоянии равновесия — в установившемся режиме — —— = 0;
dt

— = 0, т.е. 0(х,,х2) = 0 и Р{х{,х2) = 0.
dt

Правая часть уравнения (8.37) при этом становится неопределен¬
ной. Назовем точки фазовой траектории, в которых функции Q и Р
равны 0, особыми. Для уравнений (8.35) особой точкой является х2 = 0
нАх\, х2) = 0.

Сформулируем свойства фазовой траектории:

— через каждую точку фазовой плоскости (за исключением осо¬
бых точек) проходит одна фазовая траектория;

— изображающая точка (Х| , х2) при возрастании времени t дви¬
жется по часовой стрелке.

Действительно, с ростом переменной Xj ее скорость изменения

х2 = положительна, при убывании х ее скорость изменения

отрицательна. Обратим внимание на то, что в том случае, когда
модель системы определяется уравнениями (8.35), в соответствии

dx
с (8.36) при /ф0 Игл —-= «>. Это значит, что фазовые траектории

—>0 dxÿ

пересекают ось абсцисс под углом в 90°.
В зависимости от того, однозначна или нет функция /(яр *2)’

входящая в систему (8.35), может идти речь либо об одной фазовой
плоскости, либо о совокупности фазовых плоскостей, определен¬
ным образом стыкуемых между собой. Во втором случае вводится
так называемая многолистная фазовая плоскость.
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Рассмотрим оба эти случая на примере. Пусть система описыва¬
ется уравнениями:

clx\ _
х2\dt

f\(xhx2) при х2 >ц(х{)

при х2 <\|/(х,)
dx2 (8.39)
dt

В (8.39) х2) и f2(x\, x2) однозначные функции своих аргу¬
ментов, определенные в соответствующей области фазовой плос¬
кости (рис. 8.14). Точки, лежащие на кривой являются точ¬
ками, на которых происходит переключение правой части урав¬
нения (8.39). При этом фазовая траектория состоит из частей,
определяемых системой уравнений, справедливой только для дан¬
ной области. Для области х2 > i|/(Xj) справедлива система уравне¬
ний:

f f = Л(*„*2),

а для области х2 < \|/(xj) справедлива другая система уравнений:

Л, .
2’

dt

В данном случае мы имеем
дело сфазовой плоскостью неко¬
торой нелинейной системы с ли¬
нией переключения х2 = \|/(xj).
Для любой точки плоскости (Xj,
х2) дальнейшие движения одно¬
значно определятся системой
уравнений (8.39).

Рассмотрим далее случай,

когда функция _Дх1? х2) неодноз¬
начна. Такие модели соответ¬
ствуют системам автоматическо¬
го управления, содержащим ус¬
тройства, имеющие люфты, реле

/2(х,,х2).

*2
область

x2>v|/(x,)

х,

область
x2<v|/(x,)

X2=V)/(x1)

Рис. 8.14. Фазовая плоскость системы
с однозначной нелинейностью
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с гистерезисом и т.д. Подобная система описана в п. 8.4. Используем
многолистную фазовую плоскость для ее анализа. Математическая
модель системы задана уравнениями (8.15) и (8.18). Координаты

dxx _ dQ

dt dt

Тогда дифференциальное уравнение (8.18) представим в нормаль¬
ной форме Коши:

фазовой плоскости хх = 0, х2 =

dxx (8.40)
dr

dx2 _ 1

~di~Tx
[k{y-x2}. (8.41)

В соответствии с характеристикой (8.15) релейного элемента при

03 = 0

d0*апри xx=Q> — = b и х2= — >0;
к2 dt

У = Ув
Л ха dQ _

при X] = 0> —-=-Ь и х2= — <0.Н 1
к2

2
dt

Этим условиям соответствует заштрихованная часть фазовой
плоскости (рис. 8.15, лист 1). Уравнение фазовых траекторий листа 1
имеет вид:

dx2 _ Лг|

dx1 Тхх2 7J
1

(8.42)

Решение этого уравнения:

*1 ~к\УъТ\ In |х2 ~к\Ув\~Т\х2 +Q’ (8.43)

где С, — произвольная постоянная.

Каждому произвольному значению Сх соответствует фазовая тра¬
ектория на листе 1 (см. рис. 8.15). Так как Сх можно вычислить из
уравнения (8.43), задавшись начальными условиями Xj(0) и х2(0), то
каждая фазовая траектория определяется точкой начала движения.
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dd
dt=x2

Лист 2 Лист 1

0 = х,
_3L=.

ш 7
/ /

Рис. 8.15. Многолистная фазовая плоскость

В соответствии с характеристиками (см. рис. 8.15) релейного эле¬
мента при 03 = О

dQ dx}
и = — = —-> 0;2

dt dt

п *а . dQ dxi .

1
к2

1 dt dt

при Х| = 0 < — = b
*2

у=Ув\

Этим условиям соответствует незаштрихованная часть фазовой
плоскости (лист 2). В правой части уравнения (8.41) у = —ув. Из (8.40)
и (8.41) получаем дифференциальное уравнение фазовой траекто¬
рии (лист 2)

dx2 VB_J_
т\х2 т\

(8.44)
dx1

Решение этого уравнения:

*1 =к\У*Т\ ln|jc2 +*1>'В|-7’1ЛГ2 +С2, (8.45)

где С2 — произвольная постоянная.
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Каждому произвольному значению С2 соответствует фазовая тра¬
ектория на листе 2 (см. рис. 8.15). Так как С2 можно вычислить из
уравнения (8.45), задавшись начальными условиями х,(0) и х2(0) из
листа 2, то каждая фазовая траектория определяется точкой начала
движения.

В результате получается, что фазовые траектории расходятся от
точек, близких к началу координат и приближающихся к циклу,
показанному на рис. 8.15 жирной кривой. Фазовые траектории, на¬
чинающиеся в бесконечности, сходятся к тому же циклу. Следова¬
тельно, в данной системе будут наблюдаться устойчивые автоколе¬
бания, к которым сходится переходный процесс с обеих сторон, т.е.
при любых начальных условиях.

Приведенный пример позволяет сформулировать последователь¬
ность построения фазовой траектории на многолистной фазовой

плоскости:
-дифференциальное уравнение системы, имеющей неоднознач¬

ную правую часть, разделяется на ряд дифференциальных уравне¬
ний с однозначной правой частью; определяются области существо¬
вания этих правых частей;

— из физических соображений, отражающих свойства нелиней¬
ности, устанавливается порядок перехода от одной системы уравне¬
ний к другой;

— строится фазовая траектория для каждой системы уравнений

на своем листе фазовой плоскости;

— «скрепляются» листы фазовых плоскостей между собой в соот¬
ветствии с исходной моделью вдоль тех участков границ отдельных
листов, через которые изображающие точки выходят за границы ли¬
стов.

8.6. Устойчивость нелинейных систем

Для нелинейных систем понятие устойчивости является гораздо
более сложным, чем для линейных. Это вызвано значительным раз¬
нообразием движений в нелинейных системах. Основы теории ус¬
тойчивости заложены А.М. Ляпуновым в 90-х годах XIX века. Так
как решение дифференциального уравнения (или системы диффе¬
ренциальных уравнений), являющегося моделью динамической сис¬
темы, определяет переходные и установившиеся процессы, иначе —
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движение системы, то дальнейшие термины «движение системы» и
«решение уравнения системы» будем считать эквивалентными.

Пусть модель нелинейной системы управления задана в нормаль¬
ной форме Коши системой дифференциальных уравнений (см. вы¬
ражение 8.4). Решение системы при заданных начальных условиях
будем называть невозмущенным движением системы. Частным слу¬
чаем невозмущенного движения является состояние покоя системы.
В общем случае невозмущенным движением является любое реше¬
ние системы дифференциальных уравнений. Пусть из всех возмож¬
ных решений выбрано в качестве невозмущенного движения х*:

x*(t) = Fi(xifx2, ...,х*п, иь и2, ...,un) = Fi{x*x,x2, ...,х*), / =1,2, ...,п

при начальных условиях

х,*(0), *2(0), ...,х*(0), щ =и2 = •••= «„ = 0.

Все другие движения будем называть в этом случае возмущенными

xi(t) = Fi(x],x2,...,xn), / =1,

Обозначим символом Ах{ отклонение от невозмущенного движе¬
ния:

Axi(t) = xi(t)-x*(t) = Fj(xl,x2, ..,xn)-Fj(xy,x*2, ...,х*), / =1,2, ...,п (8.47)

и отклонения начальных условий соответственно:

Ах,-(0) = Xf (0)-х*(0), / =1,2, ...,п.

В зависимости от Дх;-(0), / = 1, 2, ..., п и свойств динамической
системы возможны следующие варианты поведения возмущенных
движений по отношению к невозмущенному.

1-й вариант. Возмущенные движения всегда расходятся по от¬
ношению к невозмущенному, т.е. как бы ни были малы начальные
отклонения Ах,-(0), в дальнейшем А*,-(/)—>°° при /—»®=>} / = 1,2, ..., п.

2-й вариант. Имеется такая область начальных отклонений ЛхДО),
/ = 1,2, ..., п (пусть сколь угодно малая), при которой возмущенные
движения не расходятся по отношению к невозмущенному во всем
диапазоне изменения t, т.е. ДхД/), /= 1, 2, ..., п, конечны при 0 < /< «>.
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3-й вариант. Имеется такая область начальных отклонений АхДО),
/= 1, 2, п (пусть сколь угодно малая), при которой возмущенные
движения сходятся к невозмущенному, т.е. ДхД?)—>0, / = 1,2, п,
при т —> «э.

В первом случае невозмущенное движение неустойчиво, во вто¬
ром случае — устойчиво (по Ляпунову), в третьем — асимптотичес¬
ки устойчиво. Ниже будут даны более строгие определения введен¬

ных понятий.
В теории автоматического управления принято невозмущенны¬

ми движениями выбирать установившийся режим работы системы.
В частности, тривиальным решением системы однородных диффе¬

ренциальных уравнений X = F(X) при нулевых начальных условиях
Х*(0) = 0, является равенство нулю всех фазовых координат X*(t) = 0.
Этот режим может быть выбран как невозмущенное движение.

Рассмотрим, насколько этот подход является правомочным. В со¬
ответствии с (8.47)

xi(t) = / =1,2,

Подставим Xj(t) в систему однородных дифференциальных урав¬
нений:

(8.48)

(8.49)X = F(X),

получаем:

X* +XX = F(X* + XX).

Учитывая, что Х*(/) — невозмущенное движение — результат ре¬
шения системы дифференциальных уравнений (8.49), т.е.

X*=F(X\

(8.50)

(8.51)

из (8.50) с учетом (8.51) имеем:

АХ = F(X* + АХ)-F(X*).

Если невозмущенное движение системы соответствует состоянию
покоя системы, т.е. F(X*) = 0, что соответствует тривиальному реше¬
нию системы (8.49), то в этом случае

(8.52)

АХ = ir(X* + АХ). (8.53)
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Итак, задача устойчивости невозмущенного движения сведена к
задаче устойчивости состояния покоя системы.

Перейдем к более строгому введению основных понятий теории
устойчивости. Будем считать, что фазовые координаты х2, ..., хп,
функции Fj, i = 1, 2, ..., п, заданы в некоторой области G фазового
пространства. Задание области G означает, что внутри этой области
поведение системы описывается системой уравнений (8.4). Рассто¬
яние (метрика) между точками фазового пространства задано ев¬
клидовой метрикой: квадрат расстояния I2 между точками а и b
определяется выражением

& -(*1a ~Х\Ь )2 +(*2a ~x2b)2 + —+(хпа ~хпЬ )2>

где xja и xjb — соответствующие проекции точек а и b на оси координат фазово¬
го пространства.

Тогда квадрат расстояния любой точки из области G до начала
координат

R 2 = х2 +х2 +...+ Х2.
Для момента времени / = О

/=0

Теперь можно сформулировать условие устойчивости более строго:
Невозмущенное движение устойчиво (по Ляпунову), если при вся¬

ком положительном в как бы оно не было мало, можно указать такое
5, что для всех начальных хг{0), удовлетворяющих условию RQ < 8, от¬
клонения ДхДО) /=1,2, ..., п будут удовлетворять неравенству R < в
при любом 0 < t < °о.

Если кроме сформулированного условия, R —» 0 при /—> то не¬
возмущенное движение будет асимптотически устойчиво.

В том случае, когда в качестве невозмущенного движения выб¬
рано состояние покоя системы в начале фазовых координат, асим¬
птотическая устойчивость физически означает, что все фазовые тра¬
ектории стремятся при / —» °° к началу координат.

Если для выполнения условий асимптотической устойчивости
требуется, чтобы область начальных отклонений 8 была достаточно
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мала, то говорят об асимптотической устойчивости в малом. Если
область 5 имеет конечные размеры, то говорят об асимптотической
устойчивости в большом. Если, наконец, условия асимптотической
устойчивости выполняются при сколь угодно больших отклонениях
начальных условий в области G, то говорят об асимптотической ус¬
тойчивости в целом.

В качестве невозмущенного движения можно выбрать периоди¬
ческие движения системы (автоколебания). Этому движению соот¬
ветствует замкнутая кривая в фазовом пространстве (см. п. 8.5).

Для оценки устойчивости автоколебаний удобно ввести понятие
орбитальной устойчивости.

Представим возмущенные движения фазовой траекторией, кото¬
рая является геометрическим местом точек конца вектора x(t). Для
любого момента времени t можно определить кратчайшее расстоя¬
ние от конца вектора х(/)до замкнутой кривой Г, которое обозначим
р[(х(0, /)]•Под орбитально устойчивым периодическим движением
(автоколебанием) в автономной системе управления будем понимать
такое движение, для которого

Нш р[х(/),Г] = 0.

Пример системы автоматического управления с устойчивыми ав¬
токолебаниями уже был рассмотрен в п. 8.4.

8.7. Оценка устойчивости нелинейных систем по уравнениям
первого приближения

В том случае, когда модель нелинейной системы задана уравне¬
нием (8.5) и нелинейная функция /’непрерывна и имеет все произ¬
водные по своим аргументам, можно линеаризовать модель. Способ
линеаризации изложен в п. 8.3. Линеаризованное уравнение в от¬
клонениях от точки, в окрестностях которой проведена линеариза¬
ция, называется уравнением первого приближения. Поскольку это
уравнение линейно, то для устойчивости решения необходимо и до¬
статочно, чтобы корни характеристического уравнения лежали в ле¬
вой полуплоскости (см. п. 3.3). При этом имеется в виду асимптоти¬
ческая устойчивость, так как в устойчивой линейной системе при
/—» °о фазовая траектория возвращается в точку покоя. Возникает
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вопрос: будет ли устойчива в данном режиме нелинейная система,
если ее устойчивость проверена только по уравнению первого при¬
ближения. Ответ на этот вопрос дают теоремы А.М. Ляпунова.

Первая теорема. Если характеристическое уравнение линеари¬
зованной системы имеет корни только с отрицательными действи¬
тельными частями, то возмущенное движение устойчиво и при том
асимптотически, каковы бы ни были отброшенные при разложении
в ряд Тейлора в процессе линеаризации нелинейные члены ряда.

Вторая теорема. Если между корнями характеристического урав¬
нения линеаризованной системы находятся такие корни, действи¬

тельные части которых положительны, то невозмущенное движение
неустойчиво, какие бы ни были отброшенные при разложении в ряд
Тейлора в процессе линеаризации члены ряда.

Особыми являются случаи, когда корни характеристического
уравнения линеаризованной системы находятся на мнимой оси.
В этих случаях по линеаризованной модели нельзя судить об устой¬
чивости или неустойчивости системы.

Таким образом, переход от нелинейной системы к описанию урав¬
нением первого приближения позволяет свести анализ устойчивос¬

ти нелинейной системы вблизи точки линеаризации к анализу ус¬
тойчивости линейной системы.

8.8. Прямой метод Ляпунова

А.М. Ляпунов предложил метод, позволяющий получать доста¬
точные условия устойчивости нелинейных систем автоматического
управления, получившей название прямого метода Ляпунова. Как
показано в п. 8.6, запись уравнения возмущенного движения в от¬
клонениях сводит задачу об устойчивости невозмущенного движе¬
ния к устойчивости точки покоя. Ниже будем рассматривать метод
Ляпунова применительно к устойчивости точки покоя. Автономная
линейная система задана своей моделью в виде нелинейных диффе¬
ренциальных уравнений в форме Коши:

= Fi(xl,x1, I =1,2, (8.54)
dt

где X/ — фазовые координаты.
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Координаты положения точки покоя определяются из решения

dxj
= 0, i=l,2,...,/i:системы уравнений (8.54) при

dt

Fi(xbx2, = О, 1 =1,2,

Для простоты изложения будем считать, что система нелинейных
алгебраических уравнений (8.55) имеет единственное решение в на¬
чале координат, т.е. при JCJ = 0, х2 = 0, ..., хп = 0.

А.М. Ляпунов ввел специальную функцию У(х j, х2, ..., хп), задан¬
ную в области Gфазового пространства и обладающую следующими
свойствами:

(8.55)

dV— функция Уи все ее частные производные первого порядка
dXj ’

/ = 1, 2, ..., п непрерывны в некоторой открытой области, содержа¬
щей начало координат;

— в начале координат функция У= 0;

— всюду внутри рассматриваемой открытой области, кроме начала
координат, функция V* 0 и имеет значения одного знака. Такие фун¬
кции называют знакоопределенными. Это понятие отличается от поня¬
тия знакопостоянная функция, которая может быть, в отличие от зна¬
коопределенной, равна 0 не только в начале координат, в остальных
же точках знакопостоянная функция сохраняет постоянство знака.

А.М. Ляпуновым получены достаточные условия устойчивости

нелинейных систем, им доказано следующее.
Если система дифференциальных уравнений (8.54) такова, что

можно найти знакоопределенную функцию У(х j, х2, хп), произ¬
водная которой dy/dt в соответствии с системой (8.54) была бы или
знакопостоянной функцией противоположного знака с V, или тож¬
дественно равной нулю, то равновесие системы в начале коорди¬
нат устойчиво. Если производная dV/dt — знакоопределенная фун¬
кция противоположного знака с V, то равновесие системы в начале
координат асимптотически устойчиво.

Если V— функция Ляпунова подобрана, то для определения зна¬
ка ее производной нет необходимости решать систему дифференци¬
альных уравнений (8.54). Действительно, поскольку
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dxi
/=i dxi dt ’

dV(xhx2,...,xn)
Xdt

a

dx:,-
=/;(хьх2, ...,x„),

dt

в соответствии с (8.54), то

h dV(xhx2,...,xn )dVÿxÿ ...,х„)
=Х Fi(xhx2, ...,хп). (8.56)

Эхdt /i=l

В общем случае, к сожалению, отсутствуют рекомендации по од¬
нозначному подбору К-функции. Это в значительной мере опреде¬
ляет трудности при практическом использовании метода Ляпунова.

Для систем автоматического управления, имеющих структуру,
показанную на рис. 8.16, а, К-функции могут быть взяты в форме,
предложенной А.И. Лурье и В. Н. Постниковым [21]:

X

У(хьх2, ...,х„)=Цх1,х2, ...,х„)+ Р Jz(я№

о
(8.57)

где

Z(xbx2, ...,xn) = YJYjaijxixj —
/=1 j=1

так называемая квадратичная форма;

djj и Р — постоянные коэффициен¬
ты, причем ау= ау',

z(£) — статическая характеристика
безынерционного нелинейного звена,
причем z(0) = 0, z(ÿ) > 0 при * 0.

Пример статической характе¬
ристики нелинейного звена при¬
веден на рис. 8.16, 6. Условия
£-z(£) > 0 и z(0) = 0 говорят о том,
что статическая характеристика

а
(8.58) % ~ЩГ[

б н

%

Рис. 8.16. Структурная схема системы
со статической нелинейностью (а) и
статическая характеристика нелиней¬

ного звена (б)
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находится в 1-м и 3-м квадрантах и проходит через начало коорди¬
нат. Остальная часть системы определяется линейной моделью,
имеющей передаточную функцию W{p). Практическим примером,
соответствующим этой структурной схеме, в частности, является
линейный объект, передаточная функция которого W(p), и нели¬
нейный безынерционный регулятор со статической характеристи¬
кой z(£), в цепи обратной связи, w-ÿÿÿÿÿÿ управления. Выполним
исследование устойчивости, приведенной на рис. 8.16, а с исполь¬
зованием прямого метода Ляпунова.

Пример 8.2
Математическая модель объекта задана:

к\W(p) =
TlP +1

Сигнал х на выходе объекта поступает на вход элемента сравнения, где вы¬
читается из сигнала управления и (см. рис. 8.16, а). Сигнал рассогласования =
= и — х поступает на вход безынерционного регулятора, имеющего статичес¬
кую характеристику z(£), удовлетворяющую условиям z(0) = 0, £-z(£) > 0 при Ф 0.
Требуется проверить устойчивость положения равновесия в системе.

Уравнения движения системы могут быть записаны в виде

dx
Т]—+х = к]z(£);

dt

При и = 0, = —х и процессы в системе могут быть описаны одним уравне¬
нием первого порядка

dx
7] — + x =-k\z(x),

dt

или

dx _ _ х Aj
~di~~T\~Yxz{x)' (8.59)

Возьмем функцию Ляпунова в виде

V=±x2 + fz(i)dl
о

(8.60)
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Тогда ее производная

dV dV dx г , .-1 dx

dt dx dt L 1 dt

Подставив первую часть (8.59) в (8.61), получим:

(8.61)

dV г Г л: к{ 1 х2 кх 2/ ч= -[x + z(x)] — +-fz(x) =- — +фгг(х)+
J\ 71 J 71

1+*l JC-Z(X) .
dt n

civ
При X-Z(JC) > 0 производная —

dt
пространства, если k\ > 0. Таким образом, достаточным условием асимптоти¬
ческой устойчивости в целом для системы первого порядка с инерционным
звеном является положительность коэффициента усиления к\ правой части.
При этом характеристика нелинейного элемента может иметь произвольный
вид и лишь не должна выходить за пределы первого и третьего квадрантов
(см. рис. 8.16, б). Она может иметь также разрывы, но должна быть однозначной.

Абсолютной устойчивостью называют асимптотическуюустойчи¬
вость равновесия в целом для систем, структурная схема которых при¬
ведена на рис. 8.16, а, и нелинейностей, принадлежащих определенному
классу.

При этом рассматриваются (рис. 8.17) нелинейные характери¬
стики, заключенные внутри угла, образованного прямыми z = kx и z =
= rx(k > г), в первом и третьем квадрантах. Про такие характерис¬
тики будем говорить, что они заключены в секторе [г, к]. Частный
случай такой нелинейной харак¬
теристики приведен пунктирной
кривой на рис. 8.17. Пример аб¬
солютно устойчивой системы, у
которой нелинейные характери¬
стики заключены внутри секто¬
ра [0, оо] был рассмотрен в пре¬
дыдущем параграфе. Критерии
абсолютной устойчивости позво¬
ляют анализировать устойчи¬
вость систем управления для оп¬
ределенного в данном секторе
класса нелинейностей и задан¬
ной передаточной функции ли¬
нейной части системы.

отрицательна во всем диапазоне фазового

z = кхz
/

/
/

/
/ Z = гх

/
У,

7 %/
/

/
/

/
/

/
/

Рис. 8.17. Статическая характеристи¬
ка нелинейного звена, заключенная в

секторе \г, к]
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8.9. Метод гармонической линеаризации

Общая характеристика метода. Метод гармонической линеари¬
зации (метод гармонического баланса) является приближенным ана¬
литическим методом исследования нелинейных систем, модель ко¬
торых, в частности, может быть сведена к виду, представленному на
рис. 8.18. Здесь Z(Ax) — безынерционная нелинейность, Wп{р) —
передаточная функция линейной части системы.

Метод гармонической линеаризации, основанный на работах

Н.М. Крылова и Н.Н. Боголюбова, был предложен Л.С. Гольдфар¬
бом в 1940 г. [23, 35]. Различные модификации этого метода опубли¬
ковали значительно позже ученые многих стран: Тастин в Англии,
Оппельт вФРГ,ДютильвоФранции, Кюхенбургер в США [35]. В СССР
дальнейшее развитие метод гармонической линеаризации получил в
работах Е.П. Попова, И.П. Пальтова, Ю.И. Тончеева, Я.З. Цыпкина,
М.А. Айзермана, И.М. Смирновой, В.А. Тафта и многих других [28].

Рассмотрим основную идею метода. Предположим, что в замк¬
нутой системе, приведенной на рис. 8.18, при равенстве хвх = 0 су¬
ществуют автоколебания:

(8.62)*вых

Тогда при хвх = 0 на входе нелинейного элемента сигнал

Лх(0=-*ВЫХ(0-

sin(co/ + (p).ш,:\

(8.63)

Пусть Дх(/) = A sin со/, тогда на выходе нелинейного элемента бу¬
дет периодический сигнал z(t), который может быть представлен
рядом Фурье. Принята гипотеза: линейная часть системы с переда¬
точной функцией Wn(p) имеет такую амплитудно-частотную харак¬
теристику, что в установившемся режиме на ее выходе гармоники,
кроме 1-й, пренебрежимо малы. Иначе говоря, линейная часть си¬
стемы является фильтром нижних частот, на выходе которого амп¬

литуда первой гармоники зна-
Хвых чительно превышает амплиту¬

ды более высоких гармоник.
Это допущение носит название
«гипотезы фильтра». Объясне-

Хвх (2)я z(Ax) И»

Рис. 8.18. Структурная схема нелиней¬
ной системы

ние этого термина рассмотрим
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ниже. При выполнении принятого допущения и существовании мо-
ногармонических автоколебаний в соответствии с (8.63)

A sin (о/-t/BbIX sin(o)ÿ + ф) = 0. (8.64)

Последнее выполняется при

(8.65)

(8.66)

а = аВЫХ’

ф = п.

Эти условия называются условиями гармонического баланса:
(8.65) — условие баланса амплитуд, (8.66) — условие баланса фаз.
Откуда рассматриваемый метод называют также методом гармони¬
ческого баланса.

Этот метод был разработан для решения задач, позволяющих оп¬
ределить наличие или отсутствие автоколебаний в системе, рассчи¬
тать амплитуду и частоту устойчивых автоколебаний при их нали¬
чии. Поэтому исследователь, приступающий к анализу системы и
допускающий наличие автоколебаний, не знает их частоту. В этом
случае утверждение того, чтолинейная часть системы является филь¬
тром нижних частот, не имеет оснований.

Можно предположить (выдвинуть гипотезу) офильтрующих свой¬
ствах линейной части системы, использоватьдалее рассматриваемый
метод, определить наличие и частоту устойчивых автоколебаний при
сформулированной гипотезе. После чего проверить ее выполнение
и сделать выводы о достоверности результата решения. Изложен¬
ное поясняет возникновение термина «гипотеза фильтра».

Перейдем далее к гармонической линеаризации нелинейного
элемента. Выход z безынерционного нелинейного элемента явля¬
ется функцией входа Ах при отсутствии гистерезиса и функцией Ах
и dhx/dt при наличии гистерезиса. Точнее, при наличии гистерези¬
са знак производной определяет статическую характеристику. В об¬
щем случае

dАх
z =f\ Ах (8.67)’ dt

На вход нелинейного элемента НЭ (рис.
8.19) поступает гармонический сигнал

Дх(/) = A sin со/ = A sin \\/,

Ах Z
НЭ

(8.68) Рис. 8.19. Безынерцион¬
ный нелинейный элементгде \|/ = (о/.
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Вычислив

dAx
= A cocosШ = A cocosу

dt

и подставив полученное значение, а также выражение (8.68) в (8.67),
на выходе НЭ получаем периодический сигнал

Ах = A sin со/ = A sin \j/;

(8.69)z = / dAx
= A со cosсШ = Лшcos\|/.

V dt

Разлагая (8.69) в ряд Фурье, получаем:

N N I

ак sin&y + cos k\]f кz= lim Р-+
N—>°° 2

(8.70)
k=1 k=\

где

271

a0=— j/(ÿ4sin \|/, Aw cos\|/)flf\|/;

2n

ak =— J /(ÿ4sin\|/, A со cosy)sin &y d\\t;

j
2ti

j*/(/4siny,>4cD cosy)cos&ydy.

(8.71)

(8.72)

(8.73)

Начнем рассмотрение с частного случая

а0 = 0.

Это условие соответствует отсутствию постоянной составляющей
на выходе НЭ. Характеристика нелинейного элемента, приведенная
на рис 8.20, удовлетворяет (8.74). В дальнейшем будет рассмотрен
общий случай, когда я0 Ф 0.

Считая, что гипотеза фильтра выполняется и, следовательно, гар¬
моники, начиная со второй, поступающие на вход линейной части,

(8.74)
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оказывают несущественное влия¬
ние на сигнал *ВЬ1Х(0> представим
приближенно z(/) его первой гар¬
моникой:

zn

fl(x)
(8.75)z ~ ZZ| sin \p -ь 61 cosy.

Из (8.68) следует, что
-л;-ль *о А х

Ах
sin у = — .

А

В то же время

(8.76)

Рис. 8.20. Характеристика безынер¬
ционного нелинейного элемента с

гистерезисом

dAx .
-= Ах = Аса coso)/ =

dt (8.77)
= Au) cosvp.

Откуда

Ax
(8.78)COSVJ/ =-

Acо

Подставив (8.76) и (8.78) в (8.75), получаем:

а Iz ~ —Ах + (8.79)
А Асо

В частном случае, когда гистерезис отсутствует, вместо выраже¬
ния (8.68) можно записать:

z =ЛАх). (8.80)
Тогда

а\z~ — Ax. (8.81)
/1

Соотношения (8.79) и (8.81), связывающие сигналы на входе НЭ
с сигналами на его выходе, линейны. Так как они справедливы при
наличии гармонического сигнала на входе НЭ, то рассматриваемый
метод называется «методом гармонической линеаризации».

Комплексный коэффициент передачи нелинейного элемента. Пусть
на вход линейного оператора, заданного выражением (8.79), подан
входной сигнал
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Ax = AeJ(at. (8.82)
Тогда

Ax = j(dAeJl0t

и после подстановки (8.82) и (8.83) в (8.79) получаем:

(8.83)

£!fÿ+yVÿ=(£L+,-Vr
AAA А

(8.84)z =

Переходя в (8.84) к показательной форме функции комплексно¬
го переменного, получаем:

*1yarctg—i а\ ejut (8.85)z = —А
Обозначим

V«I+*I д= (8.86)
/1

h\где >. = arctg—.
«1

Это выражение называют комплексным коэффициентом переда¬
чи, или комплексным коэффициентом усиления нелинейного эле¬
мента по аналогии с Ж(До) — частотной характеристикой, введен¬
ной ранее при рассмотрении линейных систем. Вместе с тем имеют¬
ся существенные различия между этими характеристиками.

В случае линейных систем: Ия(у'о)) = Л(а))еуф(ю) и амплитудная

частотная характеристика А(ы) = I АГ(/со | ) зависит от частоты вход¬
ного сигнала. При комплексном коэффициенте передачи безынер-
ционого нелинейного элемента его модуль равен:

_У°1
2 .2+ 1

Кт\ А
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Следовательно, модуль комплексного коэффициента передачи
безынерционной нелинейности зависит от амплитуды А гармонич¬
ного входного сигнала и не зависит от частоты. Если рассматри¬
вать, в частности, соединение безынерционной нелинейности и ли¬
нейного звена, не удовлетворяющего гипотезе фильтра, в качестве
одного нелинейного оператора, то, как будет показано далее,
комплексный коэффициент передачи будет зависеть от амплитуды
А и частоты со входного сигнала. В общем случае можно записать:
WH(jA, to). При рассмотрении безынерционных нелинейностей ос¬
тавим обозначение

Комплексный коэффициент передачи, как следует из (8.84), мо¬
жет быть задан в алгебраической форме:

wHm=ÿ+A=p»(A)+jQHuо.
А А

(8.87)

Инверсным комплексным коэффициентом передачи будем на¬
зывать величину

1
WH(jA) =-

WH{jA)

С учетом показательной формы комплексного коэффициента
передачи

WH(jA) =-

\la1

При алгебраической форме записи инверсного комплексного ко¬
эффициента передачи

Ь\АQ\A

aA+Jh ~~~ай~Ъ\
А А

Для выяснения свойств комплексного коэффициента передачи
получим его выражение при характеристике нелинейного элемента,
приведенной на рис. 8.20. Здесь

1
WH(jA) =- (8.88)

2 +J J.a\+b\

345



dx
f\(x) при — >0;

dtz(x) = (8.89)
с/х

f2(x) при — <0.
dt

Положив A > JCQ, зададимся гармоническим сигналом A sin Ш. Тогда

— = и — >0 при 0<\|/ = ой< — , — <\\f<2n, — <0 при
dt dt 2 2 dt

3nn— <\j/< —.
2 2

В соответствии с (8.72) при k= 1 для заданной нелинейности (8.89)
получаем:

3кк

1 2 1 2

= — J/i(y4sin\|/)sin\|/ d\\t+—|/2C4sin\j/)sin\|/ d\\t +
71

0
71

n
a\

2

2n (8.90)
+— jyjÿsiniiOsinii/ d\\t.

2

В соответствии с (8.73) при к = 1 для заданной нелинейности (8.90)
получаем:

1
71

= — J/jC4sin\|/)cos\|/ d\\t +

1 2 i
2л

+— J/2(,4sin\|/)cos\|/d\|/ + — J yj(я4 sin \|/)cos\|/
71

n
71

3k

3K

(8.91)

2 2

Так как cos \\t ch\f = d sin \|/, и обозначив A sin \|/ = g, получаем:
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1 1 1f/l(g)dg+— \f2(g)dg + — j* f\(g)dg =
0 A -A

--S, (8.92)\ =~~7
"*0 nA

где S — площадь петли гистерезиса.

Комплексный коэффициент передачи для рассмотренного слу¬
чая получается после подстановки (8.90) и (8.92) в (8.86). Угол сдви¬
га фаз между первой гармоникой выходного сигнала и первой гар¬
моникой входного сигнала в соответствии (8.86) имеет вид:

5
X = arctg - (8.93)

71/Ц

Из рассмотренного примера следуют важные выводы:

— при отсутствии гистерезиса у нелинейного элемента, т.е. при 5=0,
угол сдвига фаз между первой гармоникой сигнала на выходе нели¬
нейного элемента и гармоническим сигналом на его входе равен
нулю;

— при отсутствии гистерезиса у нелинейного элемента Ь\ = 0 и
комплексный коэффициент передачи, как следует из (8.86), являет¬
ся действительным числом, определяемым выражением

КН{А) = (8.94)
А

Комплексный коэффициент передачи (усиления)различных нелиней¬
ных элементов. Для получения комплексного коэффициента пере¬
дачи для случая, охватывающего большое число типовых элементов,
рассмотрим следующий пример.

Статическая характеристика релейного элемента приведена на
рис. 8.21, а. Напряжение срабатывания реле равно ±Axfl; напряже¬

ние отпускания ±Лхй; ±zm — сигнал на выходе сработавшего реле.
Изменяя величины Аха и Ахь, получим множество статических ха¬
рактеристик, приведенных на рис. 8.21.

Различные соотношения величин Аха и Ахь показаны в подрису¬
ночной подписи. Если амплитуда А гармонического сигнала на входе
нелинейного элемента меньше Аха, то сигнал на его выходе равен 0.
Для нелинейного элемента, статическая характеристика которого при-
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ба
при 0 < у < 1

Zh Z

Z„, ZW

-А*«
Ах0 х х

-т

дв г
при у = — 1 при у = 1 при—1 <у<0

Z

Zm zn z

zm

-Axa Дxa x
Axa x-ДхАX

-z*Zm

Рис. 8.21. Статические характеристики нелинейных элементов:
а — Дха> 0; Дхй> 0; Лха>ЛхА; б—Аха= Ахй = 0; в — Дха> 0; Axft> — Дха; г— Дха= Ахь > 0;

д — Дха>0; |Дха| > |AXJ;AXA>0

ведена на рис. 8.21, а, при А > хь сигнал z((o/) на выходе НЭ построен
на рис. 8.22, при dx/dt < 0 напряжение отпускания реле равно —Ахь;
при dx/dt > 0 напряжение отпускания реле равно Ахь

Определим коэффициенты я0, Я], Ь\. Очевидно, что постоянная
составляющая сигнала на выходе НЭ равна 0, т.е. я0 = 0. Координата

Ша срабатывания реле определяется из уравнения

A sin co/fl = Аха и sinco/fl=-ÿ-.
Координата отпускания реле определяется из уравнения

(8.95)

Л sin (я-0)/я) = Ахь
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и z

Z*
Axb n

sin (те-0)ÿ) . (8.96)
A -Axa "AX,

A4 A*aj x
Учитывая, что статическая

характеристика НЭ нечетная
функция, всоответствии с (8.73)
получаем:

“Zm!

-А -Zт Z,„ А

Ах, z
2Шь

Q\— — I zm sin СО/ flf((0/)
71 J

>J= aa

toca (8.97)
Ax(t) = /4sinto/

Z(G)/)

_2zm 3
[cosco/ÿ -coscofy]. я \bXn

3

С учетом (8.95) и (8.96)

до2. 2л
cosco/a =yl-sin2co/a = 1-

A 1

з

cosco/ÿ = —у1 — sin2(л — (0/ÿj ) Рис. 8.22. Построение сигнала на вы¬
ходе НЭ при гармоническом сигнале на

его входе

1-
А

Откуда

Л**? АхЛ22zm +Л-1- (8.98)а\ =
А Ал

Коэффициент />| определяется непосредственно по формуле
(8.92):

2
Ь\ =-—zm{Axa-Axb).

Ал
Подставив а1 и Ь1 в (8.87), получаем комплексный коэффициент

передачи нелинейного элемента в алгебраической форме:

(8.99)
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2zmИ/„0>1) = 1- +.1-
An A A

(8.100)
2

-j-z„(Ax0 -Ax,,).
Ля

На рис. 8.23 представлены зависимости действительной и мни¬
мой частей

-у

\2
2zm= + 4 1-1- (8.101)
Ап А А

-2
QH(A) =

Ап
(8.102)

а

РМ) комплексного коэффициента переда¬
чи от А — амплитуды входного сигна¬
ла. РН(А) и QH(A) равны 0 при А < Аха и
имеют разрыв в точке А = Аха, что соот¬
ветствует отсутствию сигнала на выхо¬
де нелинейного элемента при А < Аха
и появлению импульса конечной дли¬
тельности при А > Аха. Если в выра¬
жениях (8.100), (8.101) и (8.102) поло¬
жить Аха = Ахь, то получим комплек¬
сный коэффициент передачи, его
действительную и мнимую части для
безгистерезисного реле с характерис¬
тикой, приведенной на рис. 8.21, г. Оче¬
видно, что в этом случае мнимая часть
комплексного коэффициента переда¬
чи равна нулю, а

А

б

QM)

Д*а А

Рис. 8.23. Зависимость действи¬
тельной (а) и мнимой (б) частей
комплексного коэффициента
усиления от амплитуды входного
сигнала (для нелинейного элемен¬
та, статическая характеристика
которого приведена на рис.8.21, д)

4z
WH(A) = PH{A) = •(8.103)

Ап А
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аЗависимость WH(A)=PY{(A) для это¬
го случая приведена на рис. 8.24, а.

Если в выражении (8.104) поло¬
жить Аха = 0, то получим

WK{A) = РНШ

IVH(A) = PH(A) = (8.104)
An

для идеального реле — нелинейного
элемента, статическая характеристи¬
ка которого приведена на рис. 8.24, б.
Очевидно, что для этого элемента, как
не имеющего гистерезиса, QH{A) = 0.
График зависимости WH(A) приведен
на рис. 8.24, б.

Удобно представить Wn{A) в норми¬
рованной форме. Введем обозначения:

у = — коэффициент возврата

реле; при изменении величины у в ди¬
апазоне -1 < у < 1 возможно описа¬
ние нелинейных элементов, стати¬
ческие характеристики которых при¬
ведены на рис. 8.20, а, в, г, д;

А.
б

WH(A) = РН(А.)

А,

Рис. 8.24. Зависимости комлекс-
ного коэффициента усиления от
амплитуды входного сигнала для
нелинейных элементов, статичес¬
кие характеристики которых при¬
ведены а — на рис. 8.21, г; б — на

рис. 8.21, б
А

А* = — безразмерная амплиту-

да; так как движение системы имеет место при А > Аха, то А*> 1;

z
N = —--нормирующий множитель.

Аха
Значения коэффициента возврата у и его соответствия статичес¬

ким характеристикам НЭ приведены на рис. 8.21.
При этих обозначениях для идеального реле — нелинейного эле¬

мента, статическая характеристика которого приведена на рис. 8.21, б,
имеются особенности, так Аха = Ахь = 0. В случае идеального реле
откажемся от относительных величин и будем рассматривать выра¬
жение (8.104).
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После соответствующих подстановок и несложных алгебраичес¬

ких преобразований выражения (8.100) получаем:

WH(jA)= NWHH(jA*),
где

JA-i+JA-S-jv-y) (8.105)
пА*2 _

является нормированным комплексным коэффициентом передачи
нелинейного элемента. В частности [35], при А* = 1

=-Г>/ьУ-У(1-У)
71

Откуда

п

<2н„(Л* = 1)=—-а— У)-
Л

Из полученных выражений следует, что

?нн(1)+!2нн(1) = --0„н0>
л

Г 212
e„„(i)+- =

2У
Уп или

п п1у=1 п
Следовательно, геометрическое мес¬

то точек годографа вектора IVHH(A* = 1)
при изменении коэффициента воз¬
врата —1 < у < 1 является полуокруж¬
ностью, проходящей при у = 1 через
начало координат с центром в точке

+1

_2 у = 0л

У = -1

_
ОЛС

„ , ( 0,- /— ] (рис. 8.25). Инверсный ком-
Рис. 8.25. Годограф нормирован- I д J
ного комплексного коэффициен- плексный коэффициент передачи оп¬
та усиления при А, = 1 и 0 < у < 1
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ределяется выражением (8.88). После подстановки в (8.88) выраже¬
ний (8.98) и (8.99) с учетом введенных выше переменных получим:

2 (jA?-l + yjA}-y2 j + Л1-У)
1 лА*

WH{jA*) =- (8.106)

A2 -Y2+ÿ(a2-|)(a2-y2)N 4

В частности, при А* = 1

л л/l — у2 +У(1-у) 1+ ул
К(Л)=- +J . (8.107)

4JV 4УУ1-Y 1-Y

На рис. 8.26 приведен годограф вектора инверсного нормирован¬

ного комплексного коэффициента передачи Wm(jA*) при А* = 1 и
изменении коэффициента возврата от 0 < у 1• Стрелками указано
направление увеличения у.

Получение выражений комплексных коэффициентов передачи
для ряда нелинейностей является иллюстрацией методики, которую
следует использовать и при других зависимостях z(Ax). В табл. 8.1,
построенной по материалам [10, 28, 35], сведены выражения комп¬
лексных коэффициентов передачи для различных статических ха¬
рактеристик нелинейных элементов.

Симметричные автоколебания в не¬
линейных системах. Для нелинейной
системы (см. рис. 8.20) условия гармо¬
нического баланса, при которых су¬
ществуют автоколебания, определя¬
ются выражениями (8.65), (8.66). Пос¬
ле введения понятия комплексного
коэффициента усиления эти условия
можно записать в виде

J

-*я

+1

7 = 0

Рис. 8.26. Годограф вектора
инверсного нормированного
комплексного коэффициента
усиления нелинейного эле¬
мента, статическая характери¬
стика которого приведена на

рис. 8.24, а при А, = 1

Wn(MWHUA) =-\, (8.108)

где Ия,(/(о) — ЧХ линейной части системы;

WH(jA) — комплексный коэффициент пе¬
редачи нелинейной части системы.
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Таблица 8.1

Комплексные коэффициенты передачи для некоторых нелинейностей

Номер
хар-ки

Статическая
характеристика

WH(jA) = РН(А) +JQM)

2 31
2к I 1

Р»(Л) =я—(\|/2-vpi +-sin 2у2--sin 2м/х ),/

с ---/-arctg к v-ь2-ьх А = arcsin—;i|/2 = arcsin —А А
с + Ьук

Ак

ЬяЬ2 Ах1 Z = arcsin—С

<2нН)=0

z ,

arcsinM+iriZZm A2k 2 ’
arctg A:

Vÿ2 S
-*22

T
~Zm QM) = Q

4Д
A A\ A2-./arctg A:

2/v
PH(A)-k--arcsin

-6, 71

3
Ax

Q„(y4)=0

z
PH (Л) = fc2 -— (k2" ) arcsin

К*
4

O,.H) = 0
A,

arctg к

Ш’Ш
2z

y-

—Ax„—Ax, Л 71 -I
О

5
Ахй Axa д*

7M

2Z Аха
Zm A7T 1

6

П Axfl Дх Л>Дха,

Q»(A) = 0Jm
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Окончание табл. 8.1
2 31

z
4z,„Z* РМ)=

QH(A) =0,A>0
кА7

Ах
-Z*

Z , ,я\24zmЛ.М) =
лА А

8
Дх Ъ-пМаQ„(A) =- ,А> АхапА2~zm

ш-Ш
Z

2zmРМ)=
пАzm

-&Хд Дх,9
е„<я)=-%(дх„-лх4),

пА

Я>Дхо;Дха>0;|Дха|>|Дх6|

ДяГдх-Дхй

-zm
;РИ(А) =- v|/2+ÿsin2\j/2+xt/i +]-

п |_ 2 2

(?Н(Л) =~ (sin2 у2-sin2 у,),

. a zm+bk .
\(/i = arcsin — = —-;A >a

A Ak

. b zm -bk
vi/2 = arcsin — = —-

A Ak

z

zm
arctg k

—a —b10
’b\a Дх

Zm

Z
k лZm *И)«- -+¥i + 2sin2'i/i ;

Ш / b

/ I

7 : A/

-A -bA n QH(A)=-11 JL

А Гь\ KAAx

M?L arctg k 2b
VJ/J = arcsin 1 1-— I, A > b

~zm

Воспользовавшись понятием инверсного коэффициента переда¬
чи, получаем:

1
Wn{ju) =- = WH(jA). (8.109)

WH{jA)

Будем, как и ранее, рассматривать случай отсутствия постоянной
составляющей на выходе нелинейного элемента. При этом постоян-
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ная составляющая так же отсутствует на выходе линейной части сис¬
темы и автоколебания, если они имеют место, будут симметричны
относительно оси времени. Условие (8.109) можно рассматривать как
уравнение относительно неизвестных А — амплитуды и (о — частоты

автоколебаний. Если представить Wÿ(/(о) и WH(jA) в алгебраичес¬

кой форме:

Wn (у'со) = Рл (со) + jQn (со);

WH(jA) =- аяА bxA
2+J~2 +*Гal+b\

то уравнение (8.109) распадается на два:

а\А (8.110)W="

1\A(?л(м) (8.111)
a,2+6|2'

Если автоколебания в системе возможны, то корни этих уравне¬
ний являются действительными числами, определяющими частоту
и амплитуду этих автоколебаний.

Вместе с тем остались нерешенными следующие вопросы:
- как решать систему уравнений (8.110), (8.1 11)?

— если в системе возможны автоколебания, то будут ли они ус¬
тойчивы?

Рассмотрим последовательно ответы на поставленные вопросы.
Существуют различные способы решения системы уравнений

(8.110), (8.111) [28]. Следуя [35], приведем рекомендуемый Л.С. Голь¬
дфарбом графический способ решения. На рис. 8.27 приведены раз¬

личные графики Wn(jtо) и WH(jA) . На кривых WH{jA) стрелками

показано направление увеличения амплитуды А. На графиках Bÿ(/w)
стрелками указано направление изменения частоты от со = 0 до со = °°,

нанесена штриховка таким образом, чтобы область со штриховкой
была слева при движении от со = 0 до со = «>.

Случаи, приведенные на рис. 8.27, а, в, г, д, е, свидетельствуют о
наличии решения системы уравнений. При взаимном расположении
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ба
+J,+/ (0=00 (0=00

KUA) +1+1
А

2
И'Сдо) WJfa)2 Иян(л4)

1Д(1)
AÿJ\

Д<0)
о

/» Д(1)
Д(°)

1 /ю
о

г/со

в г+7д(0) жн(М) +J

'К Д(0)

?АО о
WJJvi)00(О 1 00со

Д(1) ДО)С0=ооя
+1 +1

д е
+J +J

А К(И)
Д(0)

\ О
о % со 00

со И/ (/со)00 Ия(/со)Д(1)

А

ДО) (0=00

+1
+1 КНА)

ж
+J

д(0)о
со

00

Жл(/-со)ДО)

7*А/ у С0=оо

т +1
KUA)

Рис. 8.27. Графический способ решения уравнений гармонического баланса
и анализ устойчивости автоколебаний
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*вх •яВЫХZ
Kip) К(р)

Рис. 8.28. Структурная схема линейной системы

Ия(/о)) и Иян(у!4) , показанном на рис. 8.27, б, ж, отсутствует реше¬

ние системы уравнений.
При известных координатах точек пересечения (или касания)

кривых Wn{jiо) и йян(уЛ) определяются величины А им.

Ответ на второй вопрос об устойчивости автоколебаний требует
дополнительных рассмотрений и введение понятия Д — разбиения

по параметру.
Передаточная функция системы, приведенной на рис. 8.28, оп¬

ределяется выражением

К(рЖ(р)
Щр)=

1+wH(PwJl(p)

Характеристическое уравнение этой системы

N(p) = l + lVH(pWJl(p) = 0.

Как уже было показано (см. п. 8.7), система устойчива, если все
корни характеристического уравнения лежат в левой полуплоскос¬
ти. Каждому корню а + уоо соответствует комплексно-сопряженный
корень а — уш. Если корень находится на мнимой оси Р\2 = то в
линейной системе имеются гармонические колебания с частотой со.
Если хотя бы один корень характеристического уравнения находит¬
ся в правой полуплоскости, то система неустойчива. При измене¬
нии параметров системы изменяются коэффициенты многочлена
N(p) и, следовательно, положение корней этого многочлена на ком¬
плексной плоскости. Необходимо выяснить влияние передаточной
функции WH{p) на устойчивость этой системы. При изменении
комплексного параметра WH{p) корни характеристического урав¬
нения могут пересекать мнимую ось, являющуюся границей между
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левой и правой полуплоскостью. При пересечении «границы» ко¬
рень характеристического уравнения становится мнимым р = усо и
1+ Wn(p) Жд(До) = 0, —оо < со < оо.

Откуда

1
=-

Обозначив

1
= X + jY,

Wn(jсо)

получим:

Wn{ja) = X + jY.

Итак, Х+/Уна комплексной плоскости определяет границу, пе¬
ресечение которой соответствует изменению знака действитель¬
ной части корня характеристического уравнения системы. Область
таких параметров системы, при значении которых т корней ха¬
рактеристического уравнения системы находятся в правой полу¬
плоскости, будем называть областью Д(/я). Очевидно, что т < п,
где п — порядок системы. Система устойчива, когда все ее корни
характеристического уравнения лежат в области Д(0). На рис. 8.29,
а показана Wn{p) = X+./Упри изменении со от 0 до °о, и от —°° до 0.
При увеличении частоты нанесем штриховку слева по ходу кри-

ба

j J'Jco=0
\

\

\ ljX,Y

2J~ясо——со
Д(0)

$0 1
2

\

\

/I
0

Рис. 8.29. Д-разбиение по одному параметру:
а — в плоскости X, У; б — в плоскости корней р
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вой. Функция Wn(ju)) при изменении о) от 0 до °° (она показана
сплошными линиями) является комплексно-сопряженной WR(jiо)
при изменении (о от 0 до —«».

Если в плоскости X, Y(см. рис. 8.29, а) изменять параметр систе¬
мы таким образом, чтобы граница Д-разбиений пересекалась про¬
тив направления штриховки (стрелка 1), то в плоскости корней р(см.
рис. 8.29, б) корень характеристического уравнения переходит из ле¬
вой полуплоскости в правую (см. стрелку 1). Если границу Д-разбие¬
ний пересекать по направлению к штриховке (стрелка 2, рис. 8.29, а),
то корень характеристического уравнения переходит из правой по¬
луплоскости в левую (стрелка 2, рис. 8.29, б). Рассмотренная проце¬
дура определяет факт перехода корня из одной полуплоскости в дру¬
гую. Пусть, например, из отдельно проведенного анализа известно,
что все корни характеристического уравнения системы при некото¬
рых фиксированных параметрах (область Д(0)) находится в левой
полуплоскости. Тогда изменение параметров в направлении, указан¬
ном стрелкой 1 (см. рис. 8.29, а) переводит систему в область Д(1) и
система становится неустойчивой.

После проведенных рассмотрений вернемся опять к вопросу об
устойчивости автоколебаний. Система, приведенная на рис. 8.28, с
Wn{p) на WÿijA) нелинейного элемента после его гармонической
линеаризации допускает использование аппарата Д-разбиений. Точ¬
ка 1 на рис. 8.27, а соответствует неустойчивым автоколебаниям. Так
как при случайном увеличении амплитуды А в точке 1 пересекаются
граница области Д-разбиений против направления штриховки, то
один из корней характеристического уравнения переходит в правую
полуплоскость. При этом с изменением времени опять увеличива¬
ется амплитуда автоколебаний и т.д. Точка 2 (см. рис. 8.27, а), наобо¬
рот, соответствует устойчивым автоколебаниям. Случайное увели¬
чение амплитуды А приводит к переходу корня характеристического
уравнения в левую полуплоскость. При этом с течением времени
амплитуда автоколебаний уменьшается и режим возвращается к точ¬
ке 2. При случайном уменьшении амплитуды А корень характерис¬
тического уравнения системы переходит в правую полуплоскость,
амплитуда колебаний увеличивается и режим системы опять возвра¬
щается в точку 2. Следовательно, режим автоколебаний с частотой и
амплитудой, соответствующими точке 2, является устойчивым.

На рис. 8.27 в в точке 1 отсутствует режим устойчивых автоколе¬
баний. Здесь случайное увеличение амплитуды А приводит в коле-
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бательному процессу с увеличивающейся амплитудой. Случайное
уменьшение амплитуды А приводит к дальнейшему уменьшению
амплитуды и прекращению колебаний. На рис. 8.27, г точка 1 соот¬
ветствует режиму устойчивых автоколебаний. Действительно при
случайном увеличении амплитуды А пересекается граница Д-раз-
биений в направлении, соответствующему переходу корня харак¬
теристического уравнения системы в левую полуплоскость. При
этом амплитуда колебаний уменьшается и происходит возвраще¬
ние в точку 1. При случайном уменьшении амплитуды А пересека¬
ется граница Д-разбиений в направлении, соответствующем пере¬
ходу корня из левой в правую полуплоскость. Последнее приводит
к росту амплитуды колебаний А и возврату режима в точку 1.

На рис. 8.27, д и 8.27, е рассмотрены случаи неустойчивых авто¬
колебаний. На рис. 8.27, б и 8.27, ж показаны примеры, соответ¬
ствующие устойчивым системам. В этих случаях отсутствуют авто¬
колебания. Приведенные случаи позволяют сформулировать об¬
щее правило анализа устойчивости автоколебаний в нелинейной
системе после гармонической линеаризации нелинейности: автоко¬
лебания устойчивы, если, двигаясь по характеристике WH(jA) в сто¬
рону возрастания амплитуды А переходим из неустойчивой в устой¬
чивую область Д-разбиений; автоколебания неустойчивы, если,
двигаясь по его характеристике Wn{jA) в сторону возрастания ам¬
плитуды А, переходим из устойчивой в неустойчивую область Д-
разбиений.

Несимметричные автоколебания в нелинейных системах. В том
случае, когда выполняется условие (8.71) на выходе нелинейного эле¬
мента при гармоническом сигнале на его входе и равенстве нулю
сигнала хвх на входе системы, отсутствует постоянная составляющая.
Следовательно, сигнал на выходе линейной части системы в этом
случае не содержит постоянной составляющей, и сигнал первой гар¬
моники на выходе линейной части определяет симметричные отно¬
сительно оси времени автоколебания. Если условие (8.71) не выпол¬
няется, то на выходе нелинейного элемента при наличии на его вхо¬
де гармонического сигнала имеется постоянная составляющая. Тогда
на выходе линейной части системы также имеется постоянная со¬
ставляющая. Тот же эффект имеет место при выполнении условия
(8.71), когда xBX = const = хвх0 * 0. По существу постоянный ненуле¬
вой входной сигнал смещает статическую характеристику нелиней-
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ного элемента. Наличие постоянной составляющей сигнала на вы¬
ходе системы делает сигнал на ее выходе несимметричным относи¬
тельно времени. Такие автоколебания называют несимметричными
относительно времени.

Пусть на вход нелинейного элемента поступает сумма двух сиг¬
налов постоянной составляющей Дх0 и гармонического сигнала:

Ах = Лх0 + A sin со/,

тогда сигнал на выходе нелинейного элемента также имеет постоян¬
ную составляющую. Если гипотеза фильтра выполняется, то, пре¬
небрегая высшими гармониками, представим сигнал на выходе не¬
линейного элемента:

(8.112)z(t) = a0 +ау sinw/ + />i cosсоt,

где

2л

(8.113)

2л

ау=— [/(Лх0 +/4sin\|/,ÿPcocos\j/)sin\|/ÿ\j/;

%
(8.114)

2л

by — — f /(Ах0 + A sin \|/, A со cos \\f)cos (8.115)

Используя введенный выше при гармонической линеаризации
комплексный коэффициент передачи, нелинейный элемент можно
представить двумя звеньями: одним — для гармонической составля¬
ющей с комплексным коэффициентом усиления в общем случае, оп¬
ределяемым выражением (8.86) или (8.87), и вторым —для постоян¬
ной составляющей с коэффициентом передачи

Щ(Ьх0,А)= % (8.116)
Ах0
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В соответствии с (8.113), (8.114) и (8.115) оба коэффициента за¬
висят от амплитуды А гармонического сигнала и Дх0. В случае отсут¬
ствия гистерезиса комплексный коэффициент передачи, как было
показано ранее, имеет мнимую часть, равную нулю.

Уравнение гармонического баланса имеет вид:
для постоянной составляющей

(8.117)Д*о =*вхО -Щ(Ьхо,А)1Ул(.0),

где JCBX0 — постоянный сигнал на входе системы;

для гармонической составляющей (см. 8.108)

(8.118)=-1.

Для определения амплитуды и частоты автоколебаний, а также
величины постоянной составляющей требуется решение системы
уравнений (8.117) и (8.118). Еще раз подчеркнем, что в выражении

WH(jA, AJCQ) коэффициенты a j и Ь\ определяются по формулам (8.114)
и (8.115) и, следовательно, зависят от Дх0.

Следуя [1], рассмотрим графический способ решения. Вначале для
различных А по формуле (8.113) строят зависимости я0(Дх0, А). На
этом же графике (см. рис. 8.30, а) в соответствии с уравнением (8.117)
строят прямую линию

„ _-Увхо-Ах0
0 »Тл(0)

По точкам пересечения этой прямой с семейством кривых <7q(Axq, А)
для различных А получают (см. рис. 8.30, б) зависимость Дх0(Д). Да¬
лее по формуле (8.88), где а] и Ь\ вычисляются в соответствии с (8.114)

и (8.115) для различных Ах0, строят (см. рис. 8.30, в) семейство кри¬

вых WH(jA,kxо). В случае однозначной нелинейности, когда гисте¬
резис отсутствует и, следовательно, = 0, удобней строить зависи¬
мость IVH(AXQ,A) (см. рис. 8.30, г).

Рассмотрим вначале случай нелинейностей с гистерезисом. На гра¬
фике, приведенном на рис. 8.30, в, строим зависимость 1ял{/со). В точ¬

ках пересечения WH{1±XQJA) и Ия(/ш) находим соответствующие амп-

(8.119)

литудыавтоколебаний Aal J, Аа2 |дхяJ, Аа3|ах:я j, Аа4 |
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ба
ао АА

Д|4
А А

4зЛ ---г-
А
4Л А2

Хвхо- АХо А
ао = 4

:Л
4 4 ;ч-4-*—Дя4)А*A4X2)A43)A44) А*0

А*оц

в г
Жл(/ш), ЖН(Л, Д*0)с: Дх0)

А А А А
А

А Дх0(1)
/4 сК(А Ах0)М2)

А

Axo/AxftМ3)
л44)

А
Ч3) Ч4)

со\ i

Рис. 8.30. Графический способ решения уравнений гармонического баланса
при несимметричных колебаниях

По этим точкам на графике, приведенном на рис. 8.30, б, строим
зависимость Ая{Ьх). В точке пересечений кривых Ла(Д*о) и
ходим амплитуду Ац и постоянную составляющуюавтоколебаний Дхоц.

При безгистерезисной нелинейности инверсный коэффициент
передачи — действительное число, его годограф совпадает с отрица¬
тельной полуосью абсцисс при различных Ах0.

Отсюда точка пересечений Wÿjсо) с годографом WH(A,Дх0)

ет координату по оси абсцисс, равную —с; по оси ординат, равную 0
(см. рис. 8.30, в). Проведя прямую, параллельную оси абсцисс, при
ординате равной —с, на рис. 8.30, г, получим зависимость АяАхя.
Далее задача решается аналогично предыдущему случаю. После на-

на-

име-
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хождения амплитуды, частоты и постоянной составляющей автоко¬
лебаний их устойчивость определяют так же, как в случае симмет¬
ричных колебаний.

Развитие метода гармонической линеаризации. Бурное развитие
метода гармонической линеаризации пришлось на 50-е годы про¬
шлого века. Этот метод вначале использовали для исследования ре¬
жимов автоколебаний систем автоматического управления при ну¬
левом или постоянном сигнале. В дальнейшем рассматривали реше¬
ние задач прохождения медленно изменяющихся сигналов в
автоколебательных системах, проводился анализдинамики таких си¬
стем при входных сигналах, изменение которых за период автоколе¬
баний существенно, рассматривались способы учета высших гармо¬
ник автоколебаний. Параллельно разрабатывали процедуры гармо¬
нической линеаризации для систем с несколькими нелинейностями.

Наиболее полно приближенные методы исследования нелиней¬
ных автоматических систем изложены в монографии Е.П. Попова и
М.П. Пальтова [28].

В объеме данной книги авторы ограничились центральными воп¬
росами метода гармонической линеаризации — анализа устойчиво¬
сти нелинейных систем, определения условий устойчивости режима
автоколебаний при постоянном или нулевом сигнале на входе сис¬
темы.

Дополнительно приведем примеры, позволяющие иллюстриро¬
вать метод гармонической линеаризации в системах с двумя нели¬
нейностями [10, 35].

Пример 8.3
Структурная схема системы автоматического управления с двумя нелиней¬

ностями приведена на рис. 8.31.
Требуется провести гармоническую линеаризацию системы и записать урав¬

нение гармонического баланса.
Пусть линейная часть системы с передаточной функцией Ия(/>) может удов¬

летворять гипотезе фильтра.
Представим часть системы между точками а и d как одно нелинейное зве¬

но. Для гармонической линеаризации этого звена определим сигнал х2(/) на
его выходе при сигнале на его входе JCj(/) = A sin со/. Сигнал JCj*(0 на выходе
идеального реле НЭ1 при гармоническом входном сигнале является после¬
довательностью разнополярных прямоугольных импульсов с амплитудой с
(рис. 8.32). Сигнал дг2(0 на выходе интегратора (звено с передаточной функ¬
цией 1/р) является линейной функцией времени (см. рис. 8.32) до тех пор
пока x2(t) < b — зоны нечувствительности нелинейности НЭ2, стоящей в
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НЭ1 xf*BX = *2C
-H2) I//>

—c
d

НЭ2
-ь Г
J b

c

fK(P)

Рис. 8.31. Структурная схема нелинейной системы автоматического управле¬
ния с двумя нелинейностями

обратной связи интегратора. При х2(/) = Ь сигнал на выходе НЭ2 равен с, сиг¬
нал на входе интегратора равен 0. График функции х2(/) ПРИ гармоническом

входном сигнале Х|(/) представлен на рис.
8.32. Для того чтобы сигнал на выходе ин¬
тегратора достигал величины b (именно
при этом значении х2 «включается» в ра¬
боту вторая нелинейность НЭ2), необхо¬
димо выполнение условия (см. рис. 8.32)

co/j < р.

Так как в точке со/ выполняется ра¬
венство

х,

7 (О/

(8.120)

х*с
\

-b+ \cdt = b,

0

2Ь
то Ц = —.

с
со/

При выполнении условия (8.120)
—с

2Ъ
О)-<71.

*2 С

Ь Откуда

псФ со< —. (8.121)* 2Ьсо/CO/j

Таким образом, следует рассматри¬
вать сигналы Xj(/) с частотой со, не пре¬

вышающей величины Величина ф

(см. рис. 8.31) определяется из уравнения

-Ъ

Рис. 8.32. Сигналы в анализируе¬
мой нелинейной системе с двумя

нелинейностями

366



ф

О)

b+ Jcdt
О

= 0.

Откуда

Ыо
(8.122)Ф = —

с

Несложно показать, что первая гармоника последовательности x2(t) треу¬
гольных импульсов с ограничением по амплитуде имеет вид:

4b 4b 4b j

x2(t)~ —sin ф •sin(co/-(р) = —sin ф •cosф •sin со/--sin ф •cosсо/, (8.123)
Лф Лф Лф

где ф — определяется выражением (8.122).

Jÿc/sinco/ _
то в соответствии с (8.123)

со dt соА dt

_
. Xi

Так как sinco/= — и cosсо/ =
,1

4b sin2 ф dx]4b вт2ф
(8.124)*2 = *1"пА ф пА(о ф dt

После подстановки (8.122) в (8.124) получаем:

Ый sin2 1sin 2—
с ) dx\Abe Abeс

х2 ~ Х\~ тсАш2пА Zxo bu> dt

Откуда

Ьш . 2 ( Ью
sin 2 sin

4с с еМх2(М = (8.125)
7L4CO2пА со

Комплексный коэффициент передачи, как следует из 8.125, равен:

Ьсо . 2 ( Ь(0
sin 2 SH1

2с с
WH(jA,m) = (8.126)

7L4CO

В этом случае при двух нелинейностях комплексный коэффициент переда¬
чи зависит как от амплитуды, так и от частоты входного сигнала. Еще раз под¬
черкнем, что величина со ограничена сверху неравенством (8.121).

пА со
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Уравнение гармонического баланса имеет вид:

(8.127)Жл(усо)ян(УЛо)) = -1.

Пример 8.4
Структурная схема системы автоматического управления с двумя симмет¬

ричными безынерционными нелинейностями приведена на рис. 8.33. Каждая

линейная часть системы Wÿp) и И/л2(/>) УД°влетв°Ряет гипотезе фильтра.

Требуется провести гармоническую линеаризацию системы и записать уравне¬
ние гармонического баланса.

zi Z2 Z3*вх = 0/оя; (ЫХ

-г_ ь
К2(р)НЭ1 НЭ2

а с

-1

Рис. 8.33. Структурная схема нелинейной системы автоматического управле¬

ния с двумя нелинейностями

Пусть Zj(Ax) — характеристика нелинейного элемента НЭ1. Комплексный
коэффициент передачи этого элемента после линеаризации равен:

л\ А\

где >i| = arctg —, А1 — амплитуда гармонического сигнала на входе НЭ1, тогда,
а\

рассматривая последовательное соединение первого линейного элемента НЭ1

и линейной части (р) как одно звено, получаем комплексный коэффици¬

ент передачи системы между точками а и Ь:

Wab(МA) = Wn\ (М
где Wn|(/со) — АФЧХ первой линейной части системы.

Амплитуда Л2 гармонического сигнала на входе НЭ2 в соответствии с (8.129)
определяется выражением

(8.128)

(8.129)

Л2(to) = Л1 1 WHl(JAi )| \Wm(yto)|,

где \WHX(jAx)\ — модуль комплексного коэффициента передачи НЭ1;

|Жп1(У(о)| — модуль АФЧХ, т.е. амплитудно-частотная характеристика пер¬

вой линейной части линейной системы.

Фаза ф2 гармонического сигнала на входе НЭ2 в соответствии с (8.129) име-

(8.130)

ет вид:
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bi (8.131)cp2 (со) = arctg — + ф|(to),
«1

где первое слагаемое определяется видом статической характеристики НЭ1,
cpj(co) — фазовая частотная характеристика первой линейной части системы.

Пусть z3(z2) — характеристика нелинейного элемента НЭ2. На входе этого
элемента гармонический сигнал имеет амплитуду А2 и фазу ср2. После гармо¬
нической линеаризации второй нелинейности получаем ее комплексный ко¬
эффициент передачи:

T+jÿ=\w«еДг>
л2 л2

где звездочка обозначает то, что ах и Ьх получены для второй нелинейное-

(8.132)KlUA2) =

тиД2 = arctgД.
а\

Комплексный коэффициент передачи на участке системы между точками а
и с (см. рис. 8.33), содержащий две нелинейности, между которыми включена
первая линейная часть системы, удовлетворяющая гипотезе фильтра, опреде¬
ляется выражением

Wac(jAxM = WHX{jA{)WnX(MWn2UA2).

В этом случае уравнение гармонического баланса имеет вид:

ЖосОЦ,ш)Жл2(усо) =-1.

Откуда, учитывая (8.133), получаем:

илWAMW»2UA2WjafM=-1.

Как следует из рассмотренных примеров, в том случае, когда ли¬
неаризуемый участок системы содержит инерционные звенья, комп¬
лексный коэффициент передачи зависит не только от амплитуды, но
и от частоты.

Достоинством метода гармонической линеаризации является то,
что он позволяет в рамках принятых допущений определить нали¬
чие автоколебаний в системе, их частоту и амплитуду. Метод осно¬
ван на прозрачных физических представлениях. Вместе с тем учет
только первой гармоники может в ряде случаев привести к ошибоч¬
ным результатам. Последнее определяет многоплановость анализа
динамики нелинейных систем.

(8.133)

(8.134)
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Приложение 1

Преобразование Лапласа

Оригиналом будем называть любую комплексную (следовательно,
и любую действительную) функцию x(t) действительного аргумента /,

удовлетворяющую условиям:

— x(t) — непрерывна на всей оси t за возможным исключением
точек разрыва первого рода в конечном числе на каждом интервале
конечной длины;
-х(/) = 0, при т < 0;

— существуют числа М > 0 и SQ > 0 такие, что для всех t

\x(t)\< MeS°f ,

где ,S0 — показатель роста функции x(t).

Изображением функции x(t) будем называть функцию комплекс¬
ного переменного р = s + уст, определяемую соотношением

х(р)= \x{t)e ptdt. (П1.1)
о

Интеграл в правой части этого равенства называют интегралом
Лапласа. Операцию перехода от оригинала к изображению назы¬
вают преобразованием Лапласа (иначе Пере¬
ход от оригинала к изображению символически обозначают

x(p) = L[x{t)\.
Изображение х{р) оригинала x(t) определено в полуплоскости

Rtip) > iSJ), где Re(/?) — действительная часть комплексного числа р,

50 — показатель роста x(t), т.е. х(р) определено в тех точках плоско¬
сти комплексного переменного, где интеграл Лапласа сходится.

Теорию преобразования Лапласа называют также операторным
исчислением.

Переход от изображения к оригиналам называют обратным преоб¬
разованием Лапласа, которое символически обозначают следующим
образом:

*(0=i-‘ж]-
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Обратное преобразование Лапласа осуществляется по формуле
обращения

1 С+7°°

x(t)= и'\х(р)]= — j x(p)ep'dp,
Щ c-joo

(П1.2)

где с > — показатель роста функции x{t).

Если изображение является дробно-рациональной функцией

А(р)
х(р) = со степенью числителя, меньшей степени знаменате-

в(р)
ля, имеющего корниР\,р2, --,Рп кратностей г2, гп, то оригинал
определяют по формуле

dr*~' А(р)1п
x(t)= X , v ,

к=\\гк -\)\рярк dprk 1

Если все корни знаменателя дробно-рационального изображения
простые, т.е. Г| = г2 = ... = rn = 1, то

(P-Pk)rtepllim (П1.3)ту

к=\В{рк)
(П1.4)

гае в\рк) =
dp

Р = Рк

Основные свойства преобразования Лапласа, формулируемые как
совокупность теорем, сведены в табл. П 1. 1 .

Изображение некоторых оригиналов, часто встречающихся при

анализе и синтезе динамических систем, сведены в табл. П1.2.

Таблица П1.1

№
Теорема Область оригиналов Область изображений

п/п
2 3 41

x(t) =Ха/*/(о
/— I

*(д)=У atxfp)
/=1

1 Линейность

L[x(at)]=ÿxUÿJ2 Подобие x(at), а > О
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Окончание табл. П1.1

2 3 4

3 Смещение е~а,хО) L[x(p + а)\

4 Запаздывания x(t— b), Ь> О,
x(t— b) — О при t < b

L[x(t- Ь)] = е~Ьрх{р)

5 Дифференци¬
рование
оригиналов

Л<**"(01
dt" \

рпх(р)~

dx"(t)
рпАх(0)-РП~2Х(1)(0) -х"-1(0),

А(О
dtn

гдехя(0)= при / = 0
dt‘

6 Интегрирова¬
ние оригиналов

t t

L \x(t)dt =-*0)
Lo Р

\x(t)dt
о

7 Свертка во вре¬
менной облас-

t

К(ОД (t-x)dt
о

L [fxj (т)Х! (/ -x)dt =х1(р)х2(р)
ти

8 Свертка в ком¬
плексной об¬
ласти

(0*2 (0] =
С/'+соX\(t)x2(t) 1|Xi(s)x2(p-s)ds

2лj
су-00

9 Дифференци¬
рование изо¬
бражений

dnx(p)
L[t"x(t)\= (-1)"tnxx{t)

dpn

10 Интегрирова¬
ние изображе¬

ний
t р

x(t)
t

L[lim x(/)] = lim pX(p)
/->o

Предельные
значения ори¬
гинала

limx(0
t->о р->оэ

11
Z[lim.x(0] = lim pX(p)

p->0
lim x(t)

t->OO/—» oo
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Таблица П1.2

№ п/п Оригинал Изображение

1 5(f) 1

1
2 КО

р

3 t
Р

2

п!
, Re(/>) > 04 tn, п — целое и +1

Р

1-at Re р >— Re я5 е р + а ’

, Re/?>|lmtf|я
6 sin at р2 + я2

2Р 2’ Re(/>)>|lm(fl)|
/г +я2 1 1

7 cos я?

/м- я
Re ( р) >- Re (я)8 —at

2 2 ’(р + Я) + (О
С cos со/

со
, Re(/>)>- Re(fl)9 е arsinco/

(/> + я)2 + со2

7я2"» Re (р)> |Re (я)|10 sh at Р2
Р Re (р) > |Re (я)|11 ch at р2 - я2 ’



Приложение 2

D-ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ

В данном приложении приведены D-ÿÿÿÿÿÿÿÿÿÿÿ смещенных
функций х[п, е] дискретного аргумента. В том случае, когда требует¬

ся найти изображение соответствующей функции х[я], в выражении,
приведенном в табл. П2.1, принимается 8 = 0.

Таблица П2.1

/я-изображение х*[д, е]Оригинал x[n, е]

1 при п = 0
0 при п 0

1

eq
1[и]

eq-\

eq с'1
Т +-8
2 eq-\П + 8

(е?-П

eq (eq +1) eq eq
———
eq-l

+ 2(n + е)2 2S+3
(я-1) (я-1)

eq
ea(n + £)

eq-ea

eq
e sa(n + £)

(e«-e"j(n + e) e eq-ea

elqcos core-ÿcoscoÿl-e)
e2q -2eÿcos со T+ 1

cos со T(n + e)

e2<7sin со 7e +e9sin со T(1-e)
e2q -2e9cosco74 1

sin со Г(л + e)

2<?cos (oTs—eqeacos <oT(1-c)e+ e)7’cos юцп + efl£
e2? -2e9e°cos соГ +е2<3

e2?sin со Ге +e9eesin со T(1-e)ea(n + г)Т s-n юдл + <?fle
e2«-2eVcos соГ +e2°
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Приложение 3

Дополнительные математические сведения

Характеристическая матрица. Характеристический многочлен. Ха¬
рактеристические числа. Рассмотрим векторное уравнение

Y = АХ, (П3.1)

где Y и X — вектор-столбцы;
А — квадратная матрица порядка п.

Это уравнение можно трактовать как преобразование вектора X в
вектор Y. Преобразование вектора X в пропорциональный ему век¬
тор Y можно записать в виде

Y = АХ = ХА, (П3.2)

где X — скаляр, являющийся коэффициентом преобразования.

Это уравнение распишем подробней:

аП а\2 — а\п

а21 а22 ••• а2п

*1 *1

х2 х2= Х

ап\ ап2 ••• апп Хп хп
И

(ап -Х)*! +щ2х2+— + а1пхг1 =0;

а2\х\ +(а22 ~'к)Х2 +- - + «2пхп (ПЗ.З)

ап\х\ +ап2х2+-+(ап„ -А)х„ =0.

Умножив левую и правую часть (ПЗ.З) на (—1), получаем запись
этой однородной линейной системы уравнений в виде

[XI -А] X = 0,

где I — единичная матрица.
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Щп

~а2п[А.1-А]Х (П3.4)

... X апп
Матрица [XI — А] называется характеристической матрицей мат¬

рицы А. Как следует из (П3.4), определитель характеристической
матрицы является многочленом от X степени п. Действительно, про¬
изведение стоящих на главной диагонали элементов будет многочле¬
ном от X со старшим членом Хп. Остальные элементы определителя
не содержат всех элементов, стоящих на главной диагонали, и пото¬
му их степень не превосходит п.

Многочлен от X — определитель матрицы XI -А, называется ха¬
рактеристическим многочленом матрицы А, а уравнение

Р(X) = Хп + щХп
называется характеристическим уравнением матрицы А. Так как ДА) —
определитель матрицы XI — А, то уравнение (П3.5) может быть запи¬
сано в форме

~ап\ ~ап2

п-2 (П3.5)+...+ ап_]Х + ап = О

/>(А) =|А1-А|= 0, (П3.6)

откуда с учетом (П3.5) следует:

/>(0) =|-А| = а„. (П3.7)

Если многочлен ДА) записать в виде произведения сомножите¬
лей

/>(Л)=(Л-Х1)(Х-Л2),.,(Л-Л„),
где Х|, Х2, ...,Хп — корни характеристического многочлена.

Если положить X = 0, то с учетом (П3.7)

р(он-1)>|= (-1)" (х, -х2 •..,х„ ) = а„.

Откуда определитель матрицы А

\A\=h -я2'-'К- (П3.8)
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Корни характеристического многочлена матрицы А называются
характеристическими числами матрицы А.

Из (П3.8) следует, что произведение характеристических чисел
равно определителю матрицы А.

Сумма элементов, стоящих на главной диагонали матрицы А, на¬
зывается следом матрицы А и обозначается Тг[аи\, т.е.

Тг [аи ]=аи+а22+а33+...+апп.

Все коэффициенты характеристического уравнения могут быть
определены через элементы матрицы А в соответствии со следую¬
щей рекуррентной процедурой:

а\=~тЬ

а2 = ~я[а\Т\+Т2)\

аз =-я(а2т\ +а\т2+тз );
(П3.9)

1
ап =~-{an-lTl +ап-2Т2+-+а1Тп-1+Тп)’

где — след матрицы А;

Т2 — след матрицы А2;

Тп — след матрицы А".

Эти формулы известны как формулы Бохера [12].

Пример П3.1
Найти характеристические числа матрицы А, где

2 -2 3'
1 1 1

1 3 -1

А =

На основании формулы Бохера

а1 =-7] =-(2+1-1) =-2.
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Матрица А2:

"2 -2 3

1 1 1

1 3 -1

'2 -2 3

1 1 1

1 3 -1

5 3 1

4 2 3

4-2 7

А2 = А- А =

Тогда

а2=~я(а\т\ + Т2) =--[(-2)-2+ (5+ 2 +7)]= -5.

Подобным образом

'5 3 1

4 2 3

4-2 7

'2 -2 3

1 1 1

1 3 -1

14 -4 17"
13 3 11

13 11 3

А3 = А - А А = А2 •А =

и

йз =-у(й2я1 +<*I72 + 7з) = -у[(-5)*2+(-2)*(5+ 2 +7)+ (14 + 3+3)]=6.

Следовательно, характеристическое уравнение матрицы А следующее:

Р(Х)=Х3-2А2-5А +6 = 0.

Решив это кубическое уравнение, получаем характеристические числа мат¬
рицы А: А,| = 1, А2 = —2, Я-з = 3. Следовательно,

X3 -2>с2 -5Х +6 = (Л-1)(Х-1-2)(Х-3) = 0.

Корни характеристического уравнения могут быть действитель¬
ными и комплексными. Если А,,- — комплексный корень, то сопря¬
женное комплексное число X* также является корнем характерис¬
тического уравнения (при условии, что коэффициенты уравнения
действительные числа). В общем случае корни характеристического
уравнения могут быть различными и кратными.

Миноры и алгебраические дополнения. Если в определителе | А|
этой матрицы вычеркнуть к строк и к столбцов, где 1 < к < п—1, то
элементы, стоящие на пересечении, образуют матрицу порядка к,
определитель которой называют минором к-го порядка определите¬

ля | А | . Можно сказать также, что минор /с-го порядка есть опреде¬
литель, получающийся после вычеркивания в определителе | А| п—к
строк и п—к столбцов. В частности, при вычеркивании в определи-
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теле одной, например /-й строки, и одного, например у-го столбца,
мы получаем минор порядка п— 1 . Итак, после вычеркивания в оп-

|А| Л: строк и к столбцов можно рассматривать два ми-ределителе
нора: один минор Мпорядка к — определитель, элементы которого
стоят на пересечении вычеркнутых строк и столбцов, и дополнитель¬
ный для М минор М' порядка п—к, состоящего из тех элементов оп¬
ределителя | А | , которые не стоят на пересечении выбранных кстрок
и кстолбцов. Если минор М, имеющий порядок к, расположен в стро¬
ках с номерами /1? /2, ik и в столбцах с номерами j\,j2, ..., уя, то
назовем его алгебраическим дополнением минор М ', умноженный на

(_ l)'i+/2+••-+ik +J\+h+••-+Jk Итак, алгебраическое дополнение минора М

есть его дополнительный минор М', знак перед которым определя¬
ется в зависимости от того, четная или нечетная сумма номеров строк
и столбцов, на которых расположен минор М. В частности, если ау —
элемент определителя |А | рассматривать как минор порядка п—1, то

алгебраическим дополнением Су будет определитель Му, остав¬
шийся после вычеркивания в определителе 1 А | /-й строки и у-го
его

столбца, умноженный на (— т.е.

Су = ЫУ+Щг
Алгебраические дополнения Су уже были использованы ранее в

примере 6.5.
Линейная независимость векторов. Столбцы матрицы А будем

рассматривать как векторы a j, а2, •> ап- Линейную комбинацию век¬
торов будем определять как вектор

а|й1 + а2а2+ - + а„а„,
числовые коэффициенты.где а}, а2,

Векторы 1, 2, ..., п) считаются линейно независимыми, если
при любых коэффициентах а1? а2, ..., ап хотя бы один из которых

ап

отличен от нуля, выполняется неравенство

aj«! + а2я2 + ... + aпап * 0.

Иначе, если векторы ая, а2, ап линейно независимые, то ни
один из них не может быть выражен как линейная комбинация дру¬
гих. Известно, что, если определитель | А | квадратной матрицы А
отличен от нуля, ее столбцы и строки линейно независимы. Если

I А | = 0, матрица А называется особенной (или вырожденной). При
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I A| Ф 0 матрица — неособенная (невырожденная). Обратные мат¬
рицы существуют только у неособенных матриц.

Рангом г матрицы А является наивысший порядок отличных от
нуля миноров матрицы А. Если порядок квадратной матрицы равен п,
то величина q=n — гназывается дефектом матрицы.

Очевидно, что у неособенной квадратной матрицы А порядка п
ранг г = п.

У особенной квадратной матрицы А порядка п ранг г < п.
Введем далее скалярное произведение векторов:

а\ с\

а2 с2а = и с =

ап сп
Скалярное произведение векторов ап с будем обозначать <ас>.

В том случае, когда элементы векторов комплексные числа,

<ас> = а*Тс,

где а — вектор, все элементы которого являются комплексно сопряженными
числами для элементов вектора а\

а Т — транспонированный вектор-столбец, т.е. вектор-строка.

Пусть

а\ + А
а2 +Аа= ;

_ап+ А_

с\ +А
с2 +Ас =

_сп+А_

Тогда

С\+А
с2 +А

<ос> =[а, -)Каг-]b„\

+А_

(а, -А)(ч + А)+("2 ~Jh)(c2 +jh)+-+ А)-
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Если элементы векторов а и сдействительные числа, то

<ас> -агс = й]С\ +а2С2 +...+ апЬп.
Ортогональность векторов. Векторы а и с ортогональны, если их

скалярное произведение равно 0, т.е.

< ас >=аТс = 0.

Нормой (длиной) вектора

а\ + jb\

а2 + Jb2а =

_ап + jbn

будем называть

N = yja? +bl +a2+b2 +...+ а% +b„ , т.е.

N = yJa*Tа =л/< аа>.

Если элементы вектора а — действительные числа, то все bi = 0
(/= 1, 2, ...,п) и

N = yja? +а2 +...+ ая = >/< аа> = \1ата.
Решение системы линейных однородных уравнений. Характеристи¬

ческие векторы матрицы. Модальная матрица. Присоединенная мат¬
рица. Пусть А — квадратная матрица порядка п. Как следует из (П3.4),
для каждого характеристического числа А,,- матрицы А получаем сис¬
тему линейных однородных уравнений, матричный вид которой сле¬
дующий:

[Xjl — А]Х = 0.

Так как [АД — А]Х = 0, то существуют ненулевые решения этой
системы. Ненулевой вектор Х/5 являющийся решением системы
(П3.10) называется характеристическим вектором, относящимся к
характеристическому числу А,-. Как следует из (П3.4), для характери¬
стического вектора X,- выполняется равенство

(П3.10)
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АЪ = Щ.
Можно показать, что если все характеристические числа матри¬

цы А А1? А2, ..., Хп действительны и различны, то соответствующие
им характеристические векторы Xj, Х2, Хя линейно независимы.

Так как уравнение (П3.10) однородное, то kpti9 где kt — произ¬
вольная скалярная величина, также служит решением. Иначе, если
X- — характеристический вектор, то kXi (при к Ф 0) также характери¬
стический вектор. Матрица, составленная из п характеристических
векторов, называется модальной матрицей.

Определим далее ранг матрицы [АД — А], когда характеристичес¬
кие числа различны. Так как матрица [АД — А] = 0, то ее определи¬
тель |А.Д — А| = 0 и, следовательно, матрица является особенной,
т.е. ее ранг г < п. Покажем далее, что ранг матрицы [АД-А] при раз¬
личных не может быть меньше п — 1. Предположим, что ранг ра¬
вен п — 2. Тогда все миноры определителя, порядок которых равен
п—1, равнялись бы нулю. Известно, что определитель может быть
вычислен путем разложения по элементам строки. Так, определи¬
тель квадратной матрицы В порядка п вычисляют по следующей фор¬
муле:

(П3.11)

7=1

где bjj элементы /-й строки и7-го столбца матрицы [В];

С~ = (-\)‘+Шу, Му (/=1, 2, ..., п) — миноры п- 1 порядка.

В соответствии с (П3.11) производная определителя | В | равна

*|в|
-C,J. (П3.12)

dby

Тогда при предположении, что ранг матрицы [АД — А] равен п — 2,
все миноры Му этой матрицы, порядок которых равен п — 1, равня¬
ются 0 и

L,=°-
Откуда следует, что корень А,- — кратный. Это противоречит пред¬

положению о различии всех характеристических чисел. Таким обра-
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зом, ранг матрицы [АД — А], у которой все характеристические чис¬
ла различны, равен п—1. Для матрицы, ранг которой равен п—1,
столбцы модальной матрицы могут выбираться равными или про¬
порциональными произвольному столбцу присоединенной матри¬
цы. В рассматриваемом случае столбцы модальной матрицы равны
или пропорциональны произвольному ненулевому столбцу присо¬
единенной матрицы Adj[Xj\ — А]. Следовательно, при фиксирован¬

ном Xi выбирается произвольный ненулевой столбец (или столбец
пропорциональный ему) матрицы AdflkjL — А]. Так как число раз¬
личных характеристических чисел равно п, то число характеристи¬

ческих векторов равно п и, следовательно, число столбцов в мо¬
дальной матрице равно п.

Напомним способ получения присоединенной матрицы (этим

способом уже пользовались в примере 6.2).
Присоединенной для В матрицей KdjB называется матрица, эле¬

ментами которой являются алгебраические дополнения, т.е.

AdjB =[C;j]T =[см].
Пример П3.2
Найти модальную матрицу, соответствующую матрице А, заданной в при¬

мере П3.1:

2 -2 31
А = 1 1 1

3 -11

Характеристическое уравнение матрицы А и его корни вычислены в примере
П3.1: Xj = 1; = —2; А3 = 3. Найдем присоединенную матрицу АсЭДАД — А]. При
заданной [А] матрица [АД — А] определяется выражением

ГА-2 2 -3

А-1 -1-1

-3 A+I

Тогда

А-1 -1

—3 А + 1
c„=(-i)1+1 =А2 -4;
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2 -32+1
ClH-1) = -2A + 7;

A + l-3

Ci2=(-l)1+2 — A + 2;
A + l-1

2+2 Я.-2 -3
= A2-A-5;C22=(-l)

A + l-1

A-lCi3=(-l)1+3 = >. + 2;
3

_23=3X-8;
3=3A-5;

3
= A +1;

2 =A2-3A + 4.

-1

2+3
C23 = (-l)

-1

2c3i=(-i)3+1
Л.-1

3+2 A-2
C32 “H)

-1 -1

3+3 A- 2
c33=(-i)

A-l-1

Присоединенная матрица

T
A2 -4

-2A + 7

A + 2 A + 2

A,2 -A-5tf[AI-A]= ЗА,-8

A2-ЗА + 4ЗА-5 A +1

A2 -4 -2A + 7

A2-A-5

ЗА -5

A + 2 A + l

A2-ЗА + 4A + 2 ЗА -8

При Aj = 1 присоединенная матрица равна

-3 5 -2

3-5 2

3-5 2
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При Л2 = —2 присоединенная матрица равна

Го и -и
о 1 -1

О -14 14

При = 3 присоединенная матрица равна

5 1 4

5 1 4

5 1 4

Выбираем из каждой матрицы один столбец (или столбец, все элементы
которого умножены на к Ф 0). В результате записываем модальную матрицу

-1 11

М = 1 1

1 -14 1

В данном примере из присоединенной матрицы при = 1 выбран первый
характеристический вектор-столбец, каждый элемент которого умножен на

1к = —; из присоединенной матрицы при Л2 = —2 выбран второй характеристи¬

ческий вектор; из присоединенной матрицы при = 3 выбран второй характе¬
ристический вектор.

В рассмотренном примере характеристические числа (/ = 1, 2,
..., п) были действительными. В общем случае из п характеристичес¬
ких чисел может быть 2к< п комплексных, т.е. среди п различных
характеристических чисел к пар сопряженных комплексных чисел.
Следовательно, элементы модальной матрицы М в общем случае
комплексные числа. Комплексному числу в /-м столбце и в /-й стро¬
ке модальной матрицы соответствует сопряженное ему комплекс¬
ное число в некотором столбце и той же строке.

Базис векторного пространства характеристических векторов. Ор-
тонормированный базис. Модальная матрица при различных харак¬
теристических числах имеет ранг п, т.е. ее столбцы и строки линей¬
но независимы. Совокупность п линейно независимых векторов оп¬
ределяет базис п-мерного векторного пространства. Обозначим
вектора-столбцы модальной матрицы как т{, т2, ..., тп. Тогда лю-
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бой вектор X векторного пространства решений уравнения (П3.10)
есть линейная комбинация векторов базиса:

п

х=2“;щ,
/=1

где а,- — скаляры.

Пусть далее М модальная матрица порядка п, столбцы которой
являются базисом векторного пространства решений системы ли¬
нейных однородных уравнений (П3.10). Если М
ратная модальной М, то М-1М = I, т.е.

-1 матрица, об-

'll П2

г2\ г77

г\п тп тп
Щ\ т22

Щп

г2п т2п

гп\ гп2 гпп тп\ Щ2 тпп

1 о
О 1

О

о

о о 1

Отсюда следует, что

тП
1 при i=j;

О при i*j,

mj2
Vn (П3.13)

т]п

где /= 1,2, ..., п, j= 1,2, п.

Вектора-строки матрицы, обратной к модальной, линейно неза¬
висимы. Они образуют так называемый двойственный базис вектор¬
ного пространства и, в соответствии с (П3.13), обладают свойством

1 при i = у;

О при i* j,
>=bij =

где 5у — символ Кронекера [12].
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Рассмотрим решение задачи определения ортогонального базиса.
Даны векторы т j, т2, тп базиса «-мерного пространства. Требу¬

ется найти новый базис того же пространства, векторы Y1? Y2, Yn
которого должны удовлетворять следующему соотношению:

1 при i = j;

О при / Ф j.
<yiyj>=bij

Так как скалярные произведения векторов Y;- и Yjравны 0 при / Ф j,

то векторы искомого базиса ортогональны. Равенство <У/Уг > = 1
свидетельствует об единичной длине вектора Y,. Следовательно, ис¬
комый базис — ортонормированный. Векторы Y•(/ = 1, 2, ..., п) ис¬
комого базиса принадлежат рассматриваемому векторному простран¬
ству и также являются линейной комбинацией векторов тя, т2, ...,
тп, т.е. /-Й вектор Yi (/ = 1, 2, ..., п) ортонормированного базиса

Yi=±kjimj. (П3.14)

7=1

Умножим в соответствии с определением скалярного произведе¬
ния обе части этого выражения на вектор г1(/= 1, 2, ..., п):

п

<''/Yi>=ZM<r'm/>)-
№

Учитывая (П3.13),

<r?i> = kli, (/= 1,2,..., л)

и с учетом (П3.14)

Y/=Z(<r/Y/>)1”/’ (/=1’2, -,«). (П3.15)
/=1

Последнее выражение определяет п уравнений для вычисления
ортонормированного базиса, если известна модальная матрица М и
М-1 при различных корнях характеристического уравнения.

Кратные корни характеристического многочлена. Выше рассмат¬
ривалась модальная матрица при различных характеристических
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числах. В случае кратных корней [7] определение линейно незави¬
симых столбцов модальной матрицы не очевидно. Причина состоит в
том, что не существует однозначного соответствия между кратнос¬
тью корня характеристического уравнения и кратностью вырожде¬
ния (дефекта) q. Если А,,- — корень кратности р, то дефект характе¬
ристической матрицы не может быть больше р и число линейно не¬
зависимых векторов — решений системы (ПЗ.10) не превосходит р.
При q < р можно найти для А,- только q линейно независимых харак¬
теристических векторов.

В случае равенства дефекта матрицы [А.Д — А] единице (q = 1)
столбец модальной матрицы — вектор решения системы (ПЗ.10) мо¬
жет выбираться пропорциональным любому ненулевому столбцу

AdjB[Xjl — А]. Это единственный столбец, который можно полу¬
чить для системы, имеющей р равных характеристических чисел.

Доказано, что при q > 1 матрица AdjB\kf.-А] и все ее производ¬
ные, включая

d"-2

{а<#[М-а]}
Xj=X ’dXq~2

есть ненулевые матрицы; q линейно независимых векторов — реше¬
ний системы (П3.10) можно получить из столбцов дифференциро¬
ванных ненулевых присоединенных матриц. Например, при q = р, р
различных столбцов модальной матрицы можно получить из нену¬
левых столбцов

d”-'
{М[М-А]}

dXp~l

Особый случай соответствует симметрической матрице А — мат¬
рице, в которой ау = djj. При этом дефект {A.I — А} при корне кратно¬
сти р в точности равен р. Следовательно, можно найти р линейно
независимых векторов модальной матрицы. Симметрическая мат¬
рица с действительными числами достаточно часто встречается в
моделях линейных электрических цепей.

Диагонализация квадратной матрицы- Модальная матрица М сис¬
темы уравнений (ПЗ.10) при различных характеристических числах —
неособенная квадратная матрица, т.е. матрица, у которой есть об¬
ратная М-1.
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Пусть матрица М имеет вид:

ти тп
т21 т22

т\п

т2пМ =

тп\ тп2 тпп

где п линейно независимых столбцов — решения системы уравнений (П3.10),
соответствующие п различным характеристическим числам матрицы А. Тогда
система (П3.10) после подстановки соответствующих столбцов модальной мат¬
рицы имеет вид:

[Л.Д -Aim,- = 0, (/=1,2,..., я),

Щ

щi — /-Й столбец модальной матрицы.где nij =

mni

Откуда

Х,ти
X,m2i

а\2 а\п тиа\ 1

а2\ а22 а2п тъ= Кт1 = (П3.16)

hmni ап\ ап2 апп mni

где /= 1, 2,

Объединив систему уравнений для разных /, получаем:

п.

Х\ти
Кт2\

Х2тп
Х2т22

Кт\п

Х„т2п
ап а\2

а2\ а22

а\п

... а2п
X

hmn\ Х2т„2 Кт, ап\ ап2 апппп

Ш\ 1 т\2 Щп

т2\ т22 ... т2п
X

тп1 тп2 тпп

389



или
(П3.17)AM = AM,

"X О1

x2
где Л = — диагональная матрица, состоящая из п характери-

0 К
стических чисел.

Умножив левую и правую части уравнения (П3.17) слева на М-1,
получим:

М_1МЛ = МяАМ.

Так как М *М = I, a IA = Л, то

Л = М_1АМ.

Более высокие степени матрицы А приводятся к диагональному
виду таким же образом. Например,

(П3.18)

л2 =(м_1ам)(м“1ам)=м“1а2м.
Рассмотренный способ преобразования матриц называется пре¬

образованием подобия.

Пример ПЗ.З
Привести матрицу А, заданную в примере П3.1, к диагональной форме:

"2 -2 3'
1 1 1

1 3 1

А =

В примере П3.2 получена модальная матрица этой матрицы А:

-1 11

М = 1 1 1

1 -14 1
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Тогда

-1
11 11 11

1 1 1 1 1 1 1 1 1

1 -14 1 -14 1 1 -14 11

011

-2

0 3

При наличии кратных корней характеристического уравнения
квадратная матрица в общем случае не преобразуется к диагональ¬
ной форме. Результатом преобразования является жорданова мат¬
рица.

Жорданова нормальная форма матрицы. Будем рассматривать
квадратные матрицы порядка п, элементы которых в общем слу¬
чае — комплексные числа. Жордановой клеткой порядка к, отно¬
сящейся к числу Л0, называется матрица порядка к, 1 < к< п, име¬
ющая вид:

Х0 1 о
х0 1

х0 1

о

Здесь на главной диагонали находятся числа Х0, ближайшая сверху
параллель главной диагонали состоит из единиц, остальные элемен¬
ты — нули. Примерами жордановых клеток первого, второго и тре¬
тьего порядка соответственно являются следующие матрицы:

Х0 о
*0 I

х0X ’
0

*oJ о
1

О *0

Жордановой матрицей порядка п называется матрица порядка п,
имеющая вид:
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fj оi

hj=

0

Здесь вдоль главной диагонали идут жордановы клетки Jj, J2,
Js некоторых порядков, не обязательно различных, относящихся

к некоторым числам, также необязательно различным, все места
вне этих клеток заняты нулями. При этом п> S> 1. Откуда следует,
что одна жорданова клетка порядка п также является жордановой
матрицей.

Если рассматривать диагональную матрицу как совокупность
жордановых клеток первого порядка, то в общем случае квадратная
матрица А, имеющая как различные, так и кратные характеристи¬
ческие числа, приводима к жордановой нормальной форме.

Так, например, если жорданова нормальная форма матрицы А
имеет вид, приведенный ниже, то ее характеристическое уравнение
имеет корни: A,j — кратности 1, А,2 — кратности 2, — кратности 3.
Тогда А приводится к виду:

Гя о о о
1 о

а,2 о
О

о о
о о

о о
о о о
о о о о

J = о о 1 о
о о 1

*3о о о

Назовем преобразующей матрицей Т — неособенную квадратную
матрицу порядка п, удовлетворяющую соотношению:

А = TJT-1.

Тогда, умножив справа обе части этого уравнения на матрицу Т и
перенеся все члены влево, получаем:

АТ-TJ = 0.

(П3.19)
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Это матричное уравнение относительно Т равносильно системе
п2 линейных однородных уравнений относительно я2 неизвестных
коэффициентов матрицы Т Определение преобразующей матрицы
Т сводится к решению этой системы из г? однородных линейных
уравнений. При этом из множества решений необходимо выбрать
такое решение, для которого определитель матрицы Т не равен 0.

Из матричного уравнения (П3.19) следует, что

АТ = TJ,
откуда

J = Т~]АТ. (П3.20)

Таким образом, знание матрицы Т позволяет привести матрицу А
к жордановой нормальной форме J.
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