СЦБИСТ - железнодорожный форум, блоги, фотогалерея, социальная сеть СЦБИСТ - железнодорожный форум, блоги, фотогалерея, социальная сеть
Вернуться   СЦБИСТ - железнодорожный форум, блоги, фотогалерея, социальная сеть > Техника > Уголок радиолюбителя > Силовая электроника

Ответ    
 
В мои закладки Подписка на тему по электронной почте Отправить другу по электронной почте Опции темы Поиск в этой теме
Старый 01.06.2015, 21:16   #1 (ссылка)
Crow indian
 
Аватар для Admin


Регистрация: 21.02.2009
Возраст: 42
Сообщений: 28,794
Поблагодарил: 397 раз(а)
Поблагодарили 5851 раз(а)
Фотоальбомы: 2566
Записей в дневнике: 647
Загрузки: 672
Закачек: 274
Репутация: 126089

Тема: Автоматическое зарядное устройство


Автоматическое зарядное устройство


А. САВЧЕНКО, пос. Зеленоградский Московской обл.

Тема зарядных устройств для аккумуляторных батарей весьма популярна у радиолюбителей. Описания таких устройств различного уровня сложности неоднократно публиковались. Сегодня мы предлагаем описание ещё одного варианта, способного заряжать свинцово-кислотные, а также никель-кадмиевые и литий-ионные батареи, а при необходимости использовать в качестве источника питания с регулируемым выходным напряжением.

Будучи не только радио-, но и автолюбителем, я решил обзавестись зарядным устройством, способным заряжать аккумуляторные батареи, предназначенные как для автомобилей, так и для других устройств. При этом требовалось, чтобы оно не просто "гнало ток" через батарею, но и использовало при этом современные алгоритмы зарядки и обладало разнообразными вспомогательными функциями. Например, позволяло производить зарядку не только исправных частично разряженных батарей, но и тех, которые в той или иной степени страдают часто встречающимся недугом свинцово-кислотных аккумуляторов — сульфатацией пластин, не теряло информацию о ходе зарядки при аварийном отключении напряжения в питающей сети и было способно продолжать её после восстановления напряжения. И конечно, чтобы было способно выполнять свои функции без регулярного контроля за процессом зарядки со стороны оператора. Одним словом, требовалось зарядное устройство, работающее по принципу "включил и забыл".

Однако найти готовую схему зарядного устройства, удовлетворяющего всем предъявленным к нему требова-
ниям, не удалось. Поэтому оно создавалось "с нуля". То, что получилось в результате, предлагается вниманию читателей.

Основные технические характеристики

1. Зарядка свинцово-кислотных аккумуляторных батарей
Номинальное напряжение, В 12

Ёмкость заряжаемой батареи, А-ч 35...120

Номинальный зарядный ток 0,1 -С,
но не более 7 А

Режимы зарядки: нормальный; асимметричный ток 1 асимметричный ток 2 контрольно-тренировочный цикл
Автоматическая предварительная оценка состояния батареи есть

Автоматический выбор оптимального режима зарядки есть

2. Зарядка никель-кадмиевых аккумуляторных батарей

Номинальное напряжение, В 12

Ёмкость заряжаемой батареи, А-ч 1 ...3
Номинальный зарядный ток 1,5-С

Режимы работы:

зарядка с полной предварительной разрядкой батареи разрядка батареи для после-
дующего хранения Подсчёт ёмкости разряжаемой аккумуляторной батареи есть

3. Зарядка литий-ионных аккумуляторных батарей

Номинальное напряжение, В 10,8

Ёмкость заряжаемой батареи, А-ч 1...3

Номинальный зарядный ток 1C

4. Работа в качестве источника питания

Напряжение, В 5...14

Шаг регулирования напряжения, В 0,5

Ток нагрузки, А

минимальный 0,1

максимальный 7

Защита от перегрузки по току есть

Примечание. С — значение тока в амперах, численно равное номинальной ёмкости батареи в ампер-часах.

Во всех случаях в автоматически определяемый момент полной заряженности батареи зарядный ток выключается. Если процесс зарядки прерван в связи с прекращением подачи электроэнергии питающей сети, то с возобновлением её подачи он автоматически возобновляется и продолжается с точки прерывания. Предусмотрен контроль температуры заряжаемых батарей. При зарядке свинцово-кислотной батареи учитывается её температурный коэффициент напряжения.


Зарядное устройство состоит из трёх основных блоков: источника 5... 16 В при токе нагрузки до 7 А и вспомогательные напряжения для питания блока А2. Блок АЗ позволяет в необходимых случаях разряжать батарею током до 6 А в продолжительном режиме или до 10 А в кратковременном (не более 10 с) режиме.

Блок А2 обеспечивает выполнение требуемых алгоритмов работы устройства и в соответствии с ними управляет работой остальных узлов устройства, а также отображает необходимую информацию на экране ЖКИ.

К блоку А1 подключён датчик температуры DS18B20 для измерения температуры аккумуляторной батареи, а в блок А2 конструктивно входит токоизмерительный резистор (шунт), предназначенный для измерения тока нагрузки блока А1.

В связи с тем что при работе зарядного устройства выделяется много тепла (в частности, в блоке АЗ продолжительное время рассеивается мощность более 70 Вт), в нём имеется принудительное охлаждение с помощью двух вентиляторов. При этом первый вентилятор, работающий на нагнетание, включается при запуске блока А1 и обдувает его элементы. Оба вентилятора (второй — вытяжной) работают и в тех случаях, когда ток эквивалента нагрузки в блоке АЗ превышает 4 А. Совместная работа нагнетательного и вытяжного вентиляторов обеспечивает интенсивный воздухообмен внутри корпуса зарядного устройства и максимально эффективный отвод тепла.


Блок А1 собран по схеме, изображённой на рис. 1. Здесь имеются два источника питания — основной и вспомогательный.

Основной источник вырабатывает зарядное напряжение. Чтобы уменьшить массу и габариты устройства, он выполнен по схеме импульсного полу-мостового преобразователя на базе микросхемы TL594ID (A1.DA3) — усовершенствованной версии широко известной микросхемы TL494 — и драйвера полумоста IRS2101S (А1 .DA1), управляющего выходными полевыми транзисторами IRF740 (A1.VT1 и A1.VT2). Работа подобных преобразователей многократно освещалась в литературе и в Интернете, поэтому подробно остановимся лишь на организации регулировки его выходных параметров.

Исходя из задач, решаемых зарядным устройством, выходное напряжение источника питания должно регулироваться в пределах 5... 16 В с точностью не хуже ±0,1 В. Регулировка должна выполняться по сигналам микроконтроллера, находящегося в блоке А2. Должна быть предусмотрена гальваническая развязка между низковольтными и находящимися под потенциалом питающей сети частями устройства.

В микросхеме TL594ID имеются несколько узлов, которые могут быть использованы для регулирования, компаратор "мёртвого времени" (его вход DTC — вывод 4 микросхемы) и два усилителя сигналов рассогласования (их дифференциальные входы — соответственно выводы 1,2 и 15, 16 микросхемы).

Изменением напряжения на входе DTC в пределах 0...3 В можно плавно регулировать скважность выходных импульсов, открывающих транзисторы А1 .VT1 и А1 .VT2, а следовательно, и напряжение на выходе преобразователя. Это сразу наводит на мысль решить задачу управления выходным напряжением, подавая на этот вход напряжение с "движка" цифрового переменного резистора" (ЦПР).

Однако на практике такой путь даёт неприемлемые результаты. Причина тому — слишком крутая зависимость между напряжением на входе DTC и зарядным током аккумуляторной батареи при малой разности между выходным напряжением источника зарядного тока и ЭДС батареи. Ошибка всего на несколько десятых долей вольта приводит либо к недозарядке батареи на 15...20 %, либо к её перезарядке, которая может вызвать перегрев батареи и другие неприятные последствия.

На последнем этапе зарядки для установки зарядного тока описанным методом с требуемой точностью нужен ЦПР с числом шагов более 512. Поиски таких ЦПР успехом не увенчались, ЦПР на 256 шагов работали с многочисленными сбоями, а применение распространённых 64-шаговых не позволило добиться нужной точности регулировки.

Пришлось рассмотреть возможность использования другого элемента регулирования, имеющегося в микросхеме TL594ID усилителя сигнала рассогласования. Манипулируя сигналами на входе такого усилителя, можно либо разрешить работу источника питания, либо запретить её. Чтобы использовать этот усилитель для организации плавной регулировки напряжения, достаточно подать на один из его входов, в данном случае IN+, от внешнего источника, например микроконтроллера, импульсный сигнал программируемой скважности, а на второй (IN-) — постоянное напряжение, значение которого лежит между низким и высоким уровнями импульсов.

Усилитель станет работать как компаратор, а сигналы на выходах микросхемы TL594ID Е1 и Е2 станут повторять внешние импульсы, заполненные внутренними высокочастотными импульсами. Изменение скважности внешних импульсов приведёт к изменению среднего числа импульсов, пропускаемых на выходы TL594ID в единицу времени, как показано на рис. 2 для случая использования регулирования усилителя рассогласования № 2 (что и сделано в рассматриваемом блоке). Реализуется метод числоимпульсного управления напряжением источника питания.

Достоинства этого метода — отсутствие дополнительных элементов (в предыдущем случае требовался ЦПР) и возможность достичь очень мелкого шага регулирования. К примеру, при формировании управляющих импульсов 16-раз-рядным таймером микроконтроллера может быть получен такой же шаг, как с помощью 65536-шаго-вого ЦПР.

Регулировочные характеристики обоих методов идентичны. Однако при скважности внешнего управляющего сигнала более 8,5...9 при числоимпульсном регулировании начинается область нестабильной работы источника питания. Недопустимо растёт уровень пульсаций выходного напряжения из-за больших пауз между пачками импульсов на выходах микросхемы TL594ID, алгоритм стабилизации перестаёт работать должным образом.

Поэтому метод числоимпульсного регулирования, несмотря на простоту реализации и высокую точность регулирования, тоже не может самостоятельно использоваться для точного регулирования напряжения. Выход из такой ситуации — использование обоих описанных выше методов, что и реализовано в предлагаемом зарядном устройстве.

На вход DTC микросхемы А1 .DA3 подаётся напряжение с "движка" 64-шаго-вого ЦПР МСР4021-502E/SN (А1 .DA4), с помощью которого выполняется грубая установка напряжения. Микроконтроллер блока А2 управляет ЦПР через изолятор интерфейса ADuM1300ARW (A1.U2), используя два из трёх каналов последнего.


На неинвертирующий вход 2IN+ усилителя сигнала рассогласования второго канала микросхемы A1.DA3 через третий канал изолятора A1.U2 поступает управляющий импульсный сигнал, скважность которого изменяется с девятиразрядной точностью (512 возможных состояний). Первоначально она установлена равной 2, что соответствует середине интервала регулирования.

Процесс получения требуемого значения напряжения проиллюстрирован графиком на рис. 3. Он состоит из двух этапов: установки и коррекции. На этапе установки напряжение на выходе источника питания увеличивается путём перемещения "движка" ЦПР, пока оно не превысит заданный уровень. Затем начинается этап коррекции, в ходе которого микроконтроллер, изменяя в небольших пределах скважность импульсов на входе 2IN+, приводит напряжение к требуемому значению.

Типовое значение точности установки напряжения при токе нагрузки 0,3 А — ±0,02...0,04 В, что более чем достаточно. Для выключения основного источника питания достаточно подать на вход 2IN+ микросхемы A1.DA3 вместо импульсного управляющего сигнала постоянный логически высокий уровень напряжения.
Вспомогательный источник питания малой мощности (1,5 Вт) состоит из понижающего трансформатора А1 .T1, диодного моста А1 .VD2—А1 .VD5, конденсаторов А1.С1, А1.СЗ и интегрального стабилизатора напряжения A1.DA2. Он предназначен для выработки нестаби-
лизированного напряжения +8...11 В и стабилизированного +5 В,изолированных от находящейся под сетевым напряжением части основного источника питания. Напряжение +5 В используется для питания изолированной части изолятора интерфейса A1.U2 и преобразователя постоянного напряжения в постоянное A1.U1, который формирует изолированное от вспомогательного источника напряжение питания + 12 В для микросхем А1 .DA1 и А1 .DA3. Кроме того, выходные напряжения этого источника питают элементы блока А2.

Чертёж печатных проводников платы А1 представлен на рис. 4, а расположение деталей на ней — на рис. 5. Диоды A1.VD8—A1.VD11 снабжены индивидуальными ребристыми теплоотводами, имеющими площадь теплоотводящей поверхности около 40 см2 каждый. Транзисторы А1 .VT1, А1 .VT2 установлены на общем ребристом теплоотводе с площадью теплоотводящей поверхности 130 см2. Плата закреплена в корпусе зарядного устройства так, что находящиеся на ней теплоотводы обдувает вентилятор, нагнетающий воздух в корпус.

А1 .RK1—терморезистор с отрицательным температурным коэффициентом сопротивления и максимальным током 3 А. Конденсаторы А1 .С7— А1 .С9 — плёночные.

Трансформатор А1.Т1 — BVEI 322 2020 мощностью 1,5 В А и с напряжением вторичной обмотки 6 В (под нагрузкой 250 мА). Трансформатор А1.Т2 — силовой мощностью 230 Вт от блока питания ATX РМ-230 фирмы Maxlls. У него удалены семь витков обмотки I (первичной). Для такой переделки трансформатор не требуется разбирать, достаточно снять слой изолирующей ленты, которой покрыта катушка трансформатора, и отмотать семь витков наружного слоя обмотки, после чего восстановить изоляцию.

Блок А2 реализует все необходимые алгоритмы работы зарядного устройства во всех его режимах, формирует сигналы управления работой остальных частей устройства и отображает на индикаторе информацию о ходе исполняемого алгоритма.

Схема блока изображена на рис. 6. Его ядро — микроконтроллер ATxmega256A3U-AU (A2.DD1). На первый взгляд применение здесь столь высокопроизводительного микроконтроллера экономически не оправдано — управление зарядкой аккумуляторной батареи не использует больших вычислительных ресурсов. Программы, реализующие рабочие алгоритмы зарядного устройства, не требуют высокой скорости работы процессора и больших объёмов памяти программ и данных. В принципе, они могут быть реализованы на микроконтроллерах семейства ATmega, имеющих 14...18 Кбайт памяти программ, встроенные модули часов реального времени и как минимум 40-выводный корпус. Последнее диктуется необходимостью иметь достаточно большое число линий ввода— вывода для связи с периферией.


Этим требованиям вполне соответствует микроконтроллер ATmega32, который на 15...25% дешевле, чем ATxmega256A3U. Однако для управления эквивалентом нагрузки нужен цифро-аналоговый преобразователь (ЦАП). В микроконтроллерах семейства АТхпледаАЗ встроенный ЦАП есть, а с АТтеда32 придётся использовать отдельную микросхему. Поэтому по сравнению с комплектом из ATmega32 и внешнего ЦАП применение АТхтеда 256A3U следует признать выгодным и экономически, и технологически — значительно проще разместить на печатной плате одну микросхему, чем две.

Микроконтроллер A2.DD1 тактируется от встроенного RC-генератора на частоте 32 МГц, а его система реального времени — от встроенного микро-мощного генератора, работающего на частоте 32768 Гц. Часы реального времени требуются для учёта количества электричества полученного или отданного аккумуляторной батареей в режимах зарядки и разрядки.

Для отображения информации о работе зарядного устройства в блоке А2 установлен графический ЖКИ WO240128A-TFH (A2.HG1). Значительные ресурсы применённого микроконтроллера позволяют отображать на этом ЖКИ информацию тремя различными по размеру шрифтами с учётом её важности, выводить большое число информационных сообщений, одним словом, делают работу пользователя максимально комфортной.

Основную долю потребляемой блоком А2 энергии (более 90 %) расходует подсветка индикатора. Ввиду этого реализовано программное управление подсветкой с помощью ключа на транзисторе A2.VT1. Чтобы уменьшить потребление, подсветка в необходимых случаях может быть отключена, а для привлечения внимания оператора переведена в мигающий режим.

Управляют работой зарядного устройства с помощью четырёх кнопок: A2.SB1 "Отмена", A2.SB2 A2.SB3 "+", A2.SB4 "ОК". Они подключены к линиям PDO—PD3 микроконтроллера.

Для измерения напряжения основного источника питания, а также подключённой к зарядному устройству аккумуляторной батареи использован нулевой канал АЦП порта А микроконтроллера (его вход — линия РАО). Измеряемое напряжение +U поступает с разъёма АЗ.ХР1 и через делитель A2.R5, A2.R6 подаётся на вход АЦП. Значение зарядного тока, а в режиме источника питания — тока его нагрузки микроконтроллер определяет замером первым каналом АЦП порта А микроконтроллера (вход — линия РА2) падения напряжения на находящемся в блоке АЗ резистивном датчике тока.


Микроконтроллер управляет основным источником питания, формируя и передавая в блок А1 сигналы управления перемещения движка ЦПР и коррекции напряжения/выключения источника. Управление вентиляторами происходит по линиям РВ6 и РС1 микроконтроллера. Электронные ключи, управляющие подачей питания на вентиляторы, находятся в блоке АЗ.

Линия РСО использована как информационная интерфейса 1-Wire, по которому микроконтроллер связан с датчиком температуры ВК1.

Питаются микроконтроллер и индикатор (кроме цепи его подсветки, которую питают напряжением 5 В) напряжением 3,3 В, формируемым интегральным стабилизатором напряжения L78L33ABUTR (A2.DA1). На вход стабилизатора поступает через диод A2.VD1 напряжение +U с выхода основного источника либо в его отсутствие — через диод A2.VD2 напряжение +8 В от вспомогательного источника. Это обеспечивает работоспособность блока А2 при выключенном программно основном источнике питания и не подключённой к зарядному устройству аккумуляторной батарее.

Если батарея подключена, то при пропадании сетевого напряжения в цепи +U сохраняется напряжение, поступающее от батареи, и работоспособность блока А2 не нарушается. Гаснет лишь подсветка индикатора, а в правом верхнем углу экрана выводится мигающая надпись "!СЕТЬГ. В таком состоянии зарядное устройство потребляет от присоединённой к нему аккумуляторной батареи ток всего 5 мА. Микроконтроллер запоминает состояние алгоритма зарядки на момент отключения сетевого напряжения, а с его включением возобновляет зарядку с учётом уже выполненной её части.

Программа микроконтроллера следит за наличием напряжения в сети, анализируя логический уровень напряжения на входе РС5 микроконтроллера. Если напряжение в сети есть, уровень поступающего на этот вход напряжения с делителя A2.R4, A2.R3 высокий, а если нет, — низкий.

Чертёж печатной платы блока А2 представлен на рис. 7, а расположение элементов на ней — на рис. 8. Индикатор A2.HG1 приклеивают к свободной от печатных проводников стороне платы, как показано на рис. 8. При этом выводы индикатора должны оказаться напротив предназначенных для них контактных площадок, находящихся на стороне печатных проводников. Гибкие выводы 1—23 изгибают и припаивают к соответствующим площадкам. Жёсткие выводы А и К припаивают, не изгибая. Кнопки A2.SB1 —A2.SB4 — тактовые DTS-644.

Так как большая часть свободной поверхности платы занята индикатором, пришлось отказаться от установки на ней разъёмов. Вместо них предусмотрены группы контактных площадок, к которым припаивают провода идущих к разъёмам плоских кабелей. Один из этих кабелей идёт к не показанному на схеме разъёму для подключения датчика температуры ВК1. Сам датчик располагают в отдельном выносном корпусе, основное требование к которому — надёжный тепловой контакт датчика с заряжаемой аккумуляторной батареей.

Блок АЗ содержит эквивалент нагрузки для предварительной разрядки аккумуляторной батареи, а также электронные ключи для управления двумя внутренними вентиляторами зарядного устройства. Схема блока приведена на рис. 9.

__________________
Если у вас возникли вопросы по работе сайте - пишите на почту admin@scbist.com
Admin вне форума   Ответить с цитированием 12
Старый 13.10.2022, 10:03   #2 (ссылка)
Кандидат в V.I.P.
 
Аватар для skirko-vn


Регистрация: 09.10.2022
Сообщений: 1
Поблагодарил: 0 раз(а)
Поблагодарили 0 раз(а)
Фотоальбомы: 0
Загрузки: 0
Закачек: 0
Репутация: 0
Добрый день! Кто знает как связаться с автором данной статьи?
Решил повторить (собрать) это зарядное, но есть проблемы. Хотел бы пообщаться с автором.
skirko-vn вне форума   Ответить с цитированием 0
Похожие темы
Тема Автор Раздел Ответов Последнее сообщение
Автоматическое зарядное устройство УЗА24-20 Толян Устройства электропитания и ДГА 0 14.08.2018 06:49
Бесконтактное зарядное устройство Admin Силовая электроника 1 28.05.2015 09:17
Замена ВСП на автоматизированное зарядное устройство Aelita Схемная группа 0 08.04.2015 18:25
Автоматическое устройство контроля уровня воды АУВ – 50(110)/4-Ш Admin Вагоны и вагонное хозяйство 0 07.12.2013 17:11
DKG-507 устройство автоматического запуска ДГУ Абдурашид Устройства электропитания и ДГА 0 06.07.2011 14:36

Ответ


Здесь присутствуют: 1 (пользователей: 0 , гостей: 1)
 
Опции темы Поиск в этой теме
Поиск в этой теме:

Расширенный поиск

Ваши права в разделе
Вы не можете создавать новые темы
Вы не можете отвечать в темах
Вы не можете прикреплять вложения
Вы не можете редактировать свои сообщения

BB коды Вкл.
Смайлы Вкл.
[IMG] код Вкл.
HTML код Выкл.
Trackbacks are Вкл.
Pingbacks are Вкл.
Refbacks are Выкл.



Часовой пояс GMT +3, время: 10:01.

СЦБ на железнодорожном транспорте Справочник 
сцбист.ру сцбист.рф

СЦБИСТ (ранее назывался: Форум СЦБистов - Railway Automation Forum) - крупнейший сайт работников локомотивного хозяйства, движенцев, эсцебистов, путейцев, контактников, вагонников, связистов, проводников, работников ЦФТО, ИВЦ железных дорог, дистанций погрузочно-разгрузочных работ и других железнодорожников.
Связь с администрацией сайта: admin@scbist.com
Advertisement System V2.4